已知函数f(x)=x2-2alnx,其中a为正的常数.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 20:34:24
已知函数f(x)=x2-2alnx,其中a为正的常数.
(1)当a=1时,求f(x)的单调递减区间;(2)试判断函数y=f(x)的零点个数;(3)设G(x)=f(x)+m,若当x?[1/e,e]时,函数G(x)的图像恒在x轴的上方,求实数m的取值范围.
(1)当a=1时,求f(x)的单调递减区间;(2)试判断函数y=f(x)的零点个数;(3)设G(x)=f(x)+m,若当x?[1/e,e]时,函数G(x)的图像恒在x轴的上方,求实数m的取值范围.
(1) f(x)=x^2-2lnx
令f’(x)=2x-2/x=(2x^2-2)/x=0==>x=1,
x∈(0,1),f’(x)0,∴f(x)在x=1时取极小值
f(x)的单调递减区间为(0,1)
(2) f(x)=x^2-2alnx,令f’(x)=2x-2a/x=(2x^2-2a)/x=0==>x=√a
f(√a)=a-2aln√a=a-alna=0==>a=e
∴a∈(0,e)时,函数y=f(x)无零点,a=e时,函数y=f(x)有1个零点,a∈(e,+∞)时,函数y=f(x)有二个零点
(3) G(x)= x^2-2alnx+m,当x∈[1/e,e]时,函数G(x)的图像恒在x轴的上方
由(2)知a∈(0,e]时,函数y=f(x)无零点或有1个零点
则m>0时,x∈[1/e,e]时,函数G(x)的图像恒在x轴的上方
令f’(x)=2x-2/x=(2x^2-2)/x=0==>x=1,
x∈(0,1),f’(x)0,∴f(x)在x=1时取极小值
f(x)的单调递减区间为(0,1)
(2) f(x)=x^2-2alnx,令f’(x)=2x-2a/x=(2x^2-2a)/x=0==>x=√a
f(√a)=a-2aln√a=a-alna=0==>a=e
∴a∈(0,e)时,函数y=f(x)无零点,a=e时,函数y=f(x)有1个零点,a∈(e,+∞)时,函数y=f(x)有二个零点
(3) G(x)= x^2-2alnx+m,当x∈[1/e,e]时,函数G(x)的图像恒在x轴的上方
由(2)知a∈(0,e]时,函数y=f(x)无零点或有1个零点
则m>0时,x∈[1/e,e]时,函数G(x)的图像恒在x轴的上方
已知函数f(x)=x2-2alnx,其中a为正的常数.
已知函数f(x)=alnx+x2(a为实常数).
已知函数f(x)=alnx+x2(a为实常数).(1)若a=-2,求函数f(x)的单调区间
已知函数f(x)=x+alnx,其中a为常数,且a小于等于-1
已知函数f(x)=x的2次方-2alnx,其中a为正的常数.20分(1)当a=1时,求f(x)的单调递减区间;(2)试判
已知函数f(x)=x^2+2/x+alnx(x>0,a为常数),对任意两个不相等的正数x1,x2,证明:当af[(x1+
(2012•汕头二模)已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
已知函数f(x)=x²-(a+2)x+alnx,其中常数a>0,求函数单调区间
已知函数f(x)=alnx+1/2x^2 (a>0)若对任意两个不等的正实数x1,x2 都有[f(x1)-f(x2)]/
一道导数数学题:已知函数f(x)=x2+alnx(a为常数).(1)若a=-4,讨论f(x)的单调性;(2)若a≥-4,
已知函数f(x)=x+alnx,其中a为常数,且a≤-1 ,若f(x)≤e-1对任意x∈[e,e^2]恒成立,求实数的取
已知函数f(x)=3x平方-alnx其中a为非零常数,(1)谈论函数的单调性(2)证明当a大于零时,对任何的x大于零的不