设等差数列{an}的前n项和为Sn,且S
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:05:11
设等差数列{an}的前n项和为Sn,且S
因为a1=S1=(
a1+1
2)2,所以 a1=1.
设公差为d,则有a1+a2=2+d=S2=(
2+d
2)2.
解得d=2或d=-2(舍).
所以an=2n-1,Sn=n2.
所以 bn=(−1)n•n2.
(1)当n为偶数时,Tn=−12+22−32+42−…+(−1)nn2
=(22-12)+(42-32)+…+[n2-(n-1)2]
=3+7+11+…+(2n−1)=
n(n+1)
2;
(2)当n为奇数时,Tn=Tn−1−n2
=
(n−1)•n
2−n2=−
n2+n
2=−
n(n+1)
2.
综上,Tn=(−1)n•
n(n+1)
2.
a1+1
2)2,所以 a1=1.
设公差为d,则有a1+a2=2+d=S2=(
2+d
2)2.
解得d=2或d=-2(舍).
所以an=2n-1,Sn=n2.
所以 bn=(−1)n•n2.
(1)当n为偶数时,Tn=−12+22−32+42−…+(−1)nn2
=(22-12)+(42-32)+…+[n2-(n-1)2]
=3+7+11+…+(2n−1)=
n(n+1)
2;
(2)当n为奇数时,Tn=Tn−1−n2
=
(n−1)•n
2−n2=−
n2+n
2=−
n(n+1)
2.
综上,Tn=(−1)n•
n(n+1)
2.
设等差数列{an}的前n项和为Sn,且S
设等差数列{an}的前n项和为Sn ,且S15>0,a8+a9
设等差数列{an}前n项和为Sn,且a1>0,S13=S19,求Sn的最大值
设数列{bn}的前n项和为Sn,且bn=2-2s.数列{an}为等差数列,且a5=14,a7=20.
设数列{an}为正项数列,前n项的和为Sn,且an,Sn,an^2成等差数列,求an通项公式
设等差数列{an}的前n项和为Sn,且S5=-5,S10=15,求数列{Sn/n}的前n项和Tn
设数列an的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列
设等差数列{an}的前 n项和为Sn,且 Sn=(an+1)^/2(n属于N*)若bn=(-1)nSn,求数列{bn}的
设等比数列an的公比为q,前n项和为sn,若s(n+1),sn,s(n+2)成等差数列,求q的值
设等比数列 {an} 的公比为q,前n项和为Sn,若S(n+1),Sn,S(n+2)成等差数列,则q=
两等差数列{an}和{bn},前n项和分别为Sn,Tn,且S
设等差数列{an}的前n项和为Sn,且a4-a2=8,S10=190,(1)求等差数列{an}的通项公式an