作业帮 > 数学 > 作业

A是n阶方阵,B是n*s矩阵,且秩R(B)=n证明(1)AB=0,则A=0(2)AB=B,则A=E

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 23:43:48
A是n阶方阵,B是n*s矩阵,且秩R(B)=n证明(1)AB=0,则A=0(2)AB=B,则A=E
对B分块,即B=[C,D],其中C为n*n方阵,D为n*(n-s)阵,那么C的秩为n,即C可逆
(1)如果AB=A[C,D]=[AC,AD]=0
有AC=0,两边右乘C逆有A=0
(2)若AB=B,则AB-B = (A-E)B=0
由上题结论有A-E=0,A=E
证毕