已知方程(a-x)^2-4(b-x)(c-x)=0.试说明:1.次方程必有实数根.2.若a、b、c为三角形ABC的三边长
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 23:38:30
已知方程(a-x)^2-4(b-x)(c-x)=0.试说明:1.次方程必有实数根.2.若a、b、c为三角形ABC的三边长
,方程有两个相等的实数根,则三角形ABC为等边三角形
,方程有两个相等的实数根,则三角形ABC为等边三角形
1.因为(a-x)^2-4(b-x)(c-x)=0,
所以3x^2+(2a-4b-4c)x+(4bc-a^2)=0,
所以(判别式)1=(2a-4b-4c)^2-12(4bc-a^2)
=16[a^2-(b+c)a+(b^2+c^2-bc)],
令f(a)=a^2-(b+c)a+(b^2+c^2-bc),
所以(判别式)2=(b+c)^2-4(b^2+c^2-bc)
=-3(b-c)^2=0恒成立,
所以(判别式)1>=0恒成立,
所以此方程必有实数根;
2.若方程有两个相等的实数根,
所以f(a)=0,即-3(b-c)^2=0,
所以b=c,
所以(判别式)1=a^2-2b*a+b^2=(a-b)^2=0,
所以a=b.
所以a=b=c,
所以三角形ABC为等边三角形.
所以3x^2+(2a-4b-4c)x+(4bc-a^2)=0,
所以(判别式)1=(2a-4b-4c)^2-12(4bc-a^2)
=16[a^2-(b+c)a+(b^2+c^2-bc)],
令f(a)=a^2-(b+c)a+(b^2+c^2-bc),
所以(判别式)2=(b+c)^2-4(b^2+c^2-bc)
=-3(b-c)^2=0恒成立,
所以(判别式)1>=0恒成立,
所以此方程必有实数根;
2.若方程有两个相等的实数根,
所以f(a)=0,即-3(b-c)^2=0,
所以b=c,
所以(判别式)1=a^2-2b*a+b^2=(a-b)^2=0,
所以a=b.
所以a=b=c,
所以三角形ABC为等边三角形.
已知方程(a-x)^2-4(b-x)(c-x)=0.试说明:1.次方程必有实数根.2.若a、b、c为三角形ABC的三边长
已知a,b,c是三角形abc的三边长且关于x的方程(c-b)X.X+2(b-a)X+a-b=0,有两个实数根,那么这个三
a、b、c为三角形的三边,且方程(b-x)(b-x)-4(a-x)(c-x)=0有两个相等地实数根,试判断三角形ABC的
已知a,b,c是△ABC的三边长,若方程(a-c)x^2+2bc+a+c=0有两个相等的实数根,则△ABC是什么三角形?
已知a,b,c是三角形ABC的三边,求证:方程bx2 2(a-c)x-(a+b-c)=0有两个不相等的实数
已知abc是三角形ABC三边,求证:方程bx的平方+2(a-c)x-(a+b-c)=0有两个不相等的实数根.
若abc为三角形三边,有(x-a)(x-b)+(x-b)(x-c+(x-c)(x-a)=0且方程有两实数根,则△ABC的
已知方程(a-x)(a-x)-4(b-x)(c-x)=0.求证:此方程必有实数根?
设三角形ABC的三边为a,b,c,方程4x+4√ax+2b-c=0有两个相等的实数根,且a,b,c,满足3a-2c=b
已知a,b,c为三角形ABC三边,求证:关于X的一元二次方程cx^2-(a+b)x+c/4=0有两个不相等实数根
已知关于x的方程(a+c)x^2+2bx-(c-a)=0有两个相等的实数根,且a、b、c为△ABC的三边长
已知a b c为△abc的三边长,求证:关于X的方程b^2x^2+(b^2+c^2-a^2)x+c^2=0无实数根