作业帮 > 数学 > 作业

已知四边形ABCD是正方形,BE=AF,求证:CE²=AE(AH+HE)

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 21:36:14
已知四边形ABCD是正方形,BE=AF,求证:CE²=AE(AH+HE)
在△DAF和△ABE中
AD=AB
∠DAF=∠ABE
AF=BE
所以△DAF全等于△ABE
所以∠ADF=∠BAE,BE=AF
因为∠DAH+∠BAE=90°
所以∠ADF+∠DAH=90°
即∠DHA=90°
CE²=(BC+BE)²=BC²+2BC*BE+BE²=AB²+2AB*BE+BE².(1)
AE(AH+HE)=AE(AH+AH+AE)=AE(2AH+AE)=2AE*AH+AE²=2AE*AH+AB²+BE².(2)
比较(1)式和(2)式
AB²+2AB*BE+BE²
AB²+2AE*AH+BE²
因为AB*BE=2S△ABE=2S△ADF
AE*AH=FD*AH=2S△ADF
所以AB²+2AB*BE+BE²=AB²+2AE*AH+BE²
即(1)和(2)相等
即CE²=AE(AH+HE)
不懂可以Hi我)