作业帮 > 数学 > 作业

已知方程2x²-(根号3+1)x+m=0的两个根分别为sinθ,cosθ,求[sin(π-θ)×tan(π+θ

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:46:04
已知方程2x²-(根号3+1)x+m=0的两个根分别为sinθ,cosθ,求[sin(π-θ)×tan(π+θ)/tanθ-1]+[cos(2π-θ)/1-tanθ]
x1+x2=-b/a,x1*x2=c/a
所以sinθ+cosθ=(√3+1)/2
sinθ*cosθ=m/2
(sinθ+cosθ)²=1+√3/2
即:sin²θ+cos²θ+2sinθ*cosθ=1+√3/2
1+m=1+√3/2
m=√3/2
又因为
sin(π-α) = sinα
tan(π+α)=tanα
cos(2π-α) = cosα
所以原式=[sinθ*tanθ/(tanθ-1)]+[cosθ/(1-tanθ)]
=sin²θ/(sinθ-cosθ)+cos²θ/(cosθ-sinθ)
=(sin²θ-cos²θ)/(sinθ-cosθ)
=sinθ+cosθ=1+√3/2