正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1),为什么
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 01:38:59
正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1),为什么p>5?
我们首先改一下条件和结论:
a,b,c,d由'>0'改为'≥0',那么结论应改为P≥5
证明如下:
固定c,d,a+b=1-c-d=x
那么我们看√(3a+1)+√(3b+1)的最小值
平方得到(√(3a+1)+√(3b+1))²=3a+3b+2+2√(9ab+3a+3b+1)=3x+2+2√(9ab+3x+1)
由于固定了c,d也就固定了x,所以当9ab取到最小值时,整个式子最小
那么最小值当然是一个为0,另一个为x的时候
同样,任意固定两个变量,都可以把剩余两个变量一个变为0,一个变为最大而使得整体式子最小
所以P的最小值应为一个变量为1,剩余变量为0的时候取到
不妨设a=1,b=c=d=0
那么此时最小值P=5
所以P≥5
但是由于题设中a,b,c,d>0,所以不等号成立条件无法达到,所以P>5
a,b,c,d由'>0'改为'≥0',那么结论应改为P≥5
证明如下:
固定c,d,a+b=1-c-d=x
那么我们看√(3a+1)+√(3b+1)的最小值
平方得到(√(3a+1)+√(3b+1))²=3a+3b+2+2√(9ab+3a+3b+1)=3x+2+2√(9ab+3x+1)
由于固定了c,d也就固定了x,所以当9ab取到最小值时,整个式子最小
那么最小值当然是一个为0,另一个为x的时候
同样,任意固定两个变量,都可以把剩余两个变量一个变为0,一个变为最大而使得整体式子最小
所以P的最小值应为一个变量为1,剩余变量为0的时候取到
不妨设a=1,b=c=d=0
那么此时最小值P=5
所以P≥5
但是由于题设中a,b,c,d>0,所以不等号成立条件无法达到,所以P>5
正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1),为什么
正实数a、b、c、d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1)
1.正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1),则
一道二次根式竞赛题正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(
正实数a,b,c,d满足a+b+c+d=1,设P=根号下3a+1再加上根号下3b+1,加根号下3c+1,加根号下3d+1
已知实数a,b,c,d满足下列条件 1、d>c2、a+b=c=3、a+d
设a,b,c满足ab+bc+cd+da=1,求证:a^3/(b+c+d)+b^3/(a+c+d)+c^3/(a+b+d)
一道二次根式的竞赛题正实数a.b.c.d满足a+b+c+d=1,设P=(根号下3a+1)+(根号下3b+1)+(根号下3
设a,b,c,d是正实数,证明:a+b+c+d/abcd≤1/a^3+1/b^3+1/c^3+1/d^3
正实数abcd满足a+b+c+d=1,设P=根号下3a+1加上根号下3b+1加上根号下3c+1加上根号下3d+1,则p为
实数a.b.c.d满足下列三个条件:(1)d>c(2)a+b=c+d(3)a+b
设a、b、c、d是正实数,且满足abcd=1,