菱形ABCD两条对角线相交于点O,线段OA、OB的长是方程x ²-14x+48=0的两个根(
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 21:03:26
菱形ABCD两条对角线相交于点O,线段OA、OB的长是方程x ²-14x+48=0的两个根(
菱形ABCD两条对角线相交于点O,线段OA、OB的长是方程x ²-14x+48=0的两个根(OA>OB).动点P从A点出发,沿A→B→D以每秒2个单位向终点D匀速运动,动点Q从D点同时出发,沿D→C→B→A以每秒3个单位向终点A做匀速运动,当一个动点到达终点时,另一个动点停止运动.设运动时间为t(s),是否存在这样的时刻t,使PQ所在的直线平分菱形ABCD的面积?若存在,求出t的值,若不存在,请说明理由.
菱形ABCD两条对角线相交于点O,线段OA、OB的长是方程x ²-14x+48=0的两个根(OA>OB).动点P从A点出发,沿A→B→D以每秒2个单位向终点D匀速运动,动点Q从D点同时出发,沿D→C→B→A以每秒3个单位向终点A做匀速运动,当一个动点到达终点时,另一个动点停止运动.设运动时间为t(s),是否存在这样的时刻t,使PQ所在的直线平分菱形ABCD的面积?若存在,求出t的值,若不存在,请说明理由.
X²-14x+48=0的两个根是6和8,根据题意,OA=8,OB=6,∠OBA=2∠OBC,利用正切角关系,tan∠OBA=tan(2∠OBC)=8/6=2tan∠OBC/(1-tan∠OBC)^2,tan∠OBC=1/4,得BC直线方程:y=-4x+6,得C(1.5,0);
设存在P(x,y)使OP=BP或OB=PB,这样都使得△OPB可能是等腰三角形.满足这种假设的P点:(0-x)^2+(6-Y)^2=x^2+y^2,解得y=3,x=3/4,即P(3/4,3);
又0-x)^2+(6-Y)^2=6^2,解得y=6-(24√17)/17,x=(6√17)/17即P(6√17)/17,6-(24√17)/17);
设存在P(x,y)使OP=BP或OB=PB,这样都使得△OPB可能是等腰三角形.满足这种假设的P点:(0-x)^2+(6-Y)^2=x^2+y^2,解得y=3,x=3/4,即P(3/4,3);
又0-x)^2+(6-Y)^2=6^2,解得y=6-(24√17)/17,x=(6√17)/17即P(6√17)/17,6-(24√17)/17);
菱形ABCD两条对角线相交于点O,线段OA、OB的长是方程x ²-14x+48=0的两个根(
菱形ABCD两条对角线相交于点O,线段OA、OB的长是方程x ²-14x+48=0的两个根(OA>OB).动点
已知菱形ABCD的边长为5,两条对角线交于O点,且OA、OB的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根
平行四边形ABCD的两条对角线AC与BD相交于点O,若OA=10,OB=6,AB=8,则AD的长是-
1、已知菱形ABCD的边长为5,两条对角线相交于点O,且AO、BO的长分别是方程x的平方-(2m-1)x+4(m-1)=
菱形ABCD的边长是5,两条对角线交于点O,且AO,BO的长分别是方程x^2-(2m-1)x+4(m-1)=0的两根,求
圆M经过点O,并与x轴、y轴分别交于A、B两点,线段OA、OB(OA〉OB)的长是方程xˉ2-17x+60=0的两根.
菱形ABCD的边长为5,两条对角线交于点O,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0
如图,平行四边形ABCD的对角线相交于点O,OA=3,OB=4,AB=5,四边形ABCD是菱形吗?为什么?
如图,在平面直角坐标系中,直线AB交x,y轴于点A,B,且OA,OB的长是方程X^2-14X+48=0的两个根(OA>O
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A,B,线段OA,OB的长是方程x^2-14+48=0的两根,且
如图:⊙M经过O点,并且与x轴、y轴分别交于A、B两点,线段OA,OB(OA>OB)的长是方程x 2 -17x+60=0