设p是椭圆x²/9+y²/4=1上任意一点,F1,F2是椭圆的两个焦点,则cos角F1PF2的最小值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:47:32
设p是椭圆x²/9+y²/4=1上任意一点,F1,F2是椭圆的两个焦点,则cos角F1PF2的最小值是
记m = |PF1|,n = |PF2|,那么
|PF1|+|FP2|= 2a = 6,也就是m+n = 6,m,n>0
另外|F1F2|=2c=2√5
由余弦定理,
cos∠F1PF2 = (m²+n²- |F1F2|²) / 2mn
= (m²+n²-20)/2mn
= [(m+n)²-2mn-20]/2mn
= (16-2mn)/mn
= 16/mn - 2
所以mn最大时,cos∠F1PF2最小,
也就是m=n=3时,cos∠F1PF2最小,为16/9 - 2 = -2/9.
再问: 那个,答案A,1/2, B1/9 C5/9 D-1/9,好像没有你的-2/9?能不能继续帮检查下,还是这4个答案都是错的?
再答: cos∠F1PF2 = (m²+n²- |F1F2|²) / 2mn = (m²+n²-20)/2mn = [(m+n)²-2mn-20]/2mn = (16-2mn)/2mn = 8/mn -1 所以mn最大时,cos∠F1PF2最小, 也就是m=n=3时,cos∠F1PF2最小,为8/9 -1 = -1/9. 选择D
|PF1|+|FP2|= 2a = 6,也就是m+n = 6,m,n>0
另外|F1F2|=2c=2√5
由余弦定理,
cos∠F1PF2 = (m²+n²- |F1F2|²) / 2mn
= (m²+n²-20)/2mn
= [(m+n)²-2mn-20]/2mn
= (16-2mn)/mn
= 16/mn - 2
所以mn最大时,cos∠F1PF2最小,
也就是m=n=3时,cos∠F1PF2最小,为16/9 - 2 = -2/9.
再问: 那个,答案A,1/2, B1/9 C5/9 D-1/9,好像没有你的-2/9?能不能继续帮检查下,还是这4个答案都是错的?
再答: cos∠F1PF2 = (m²+n²- |F1F2|²) / 2mn = (m²+n²-20)/2mn = [(m+n)²-2mn-20]/2mn = (16-2mn)/2mn = 8/mn -1 所以mn最大时,cos∠F1PF2最小, 也就是m=n=3时,cos∠F1PF2最小,为8/9 -1 = -1/9. 选择D
设p是椭圆x²/9+y²/4=1上任意一点,F1,F2是椭圆的两个焦点,则cos角F1PF2的最小值
设P是椭圆X^2/9+Y^2/4上一动点,F1.F2是椭圆的两个焦点,则COS角f1pf2的最小值是
高二数学已知P是椭圆x²/4+y²=1上的一点,F1,F2分别是椭圆的两个焦点,且角F1PF2=60
设F1,F2,是椭圆x^2/36+y^2/24=1的两个焦点,P为椭圆上的一点,已知角F1PF2=60°,
已知椭圆X²/16+Y²/9=1的左右焦点分别为F1 F2,点P在椭圆上,若角F1PF2=90°,求
第一题 设F1 F2 为双曲线X²/4-y²=1 的两个焦点,点P在双曲线上,且满足角F1PF2=9
P是椭圆X^/16+Y^/9=1上一点,F1,F2分别是椭圆的左右焦点,若|PF1|.|PF2|=12,则∠F1PF2的
若P是椭圆x^2/4+y^2=1上的一点,F1,F2是椭圆的两个焦点,且∠F1PF2=60度,则△F1PF2的面积是__
设P是椭圆x^2/25+y^2/16=1上的一点,F1、F2是焦点,若∠F1PF2=30º,则
设F1,F2是椭圆x^2/25+y^2/16=1的两个焦点,点P是椭圆上任意一点.
已知F1 ,F2是椭圆x²/100+y²/64=1两个焦点,P是椭圆上一点,求|PF1|×|PF2|
F1,F2是椭圆4y^2+5x^2=20的两个焦点,P为椭圆上一点,且角F1PF2=60°,则三角形F1PF2的面积为?