过(2,4)作直线与坐标轴正半轴交A、B O为原点 求OA+OB+AB的最小值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:39:08
过(2,4)作直线与坐标轴正半轴交A、B O为原点 求OA+OB+AB的最小值
设三角形三个顶点坐标分别为O(0,0),A(a,0),B(0,b),其中a>0,b>0
设角OAB=α,α∈(0,π/2),则:
OA=a=2+4/tanα,
OB=b=4+2tanα,
AB=4/sinα+2/cosα,
周长=OA+AB+BO=6+4/tanα+2tanα+4/sinα+2/cosα
=6+4(1-(tan(α/2))^2)/(2 tan(α/2))+(4tan(α/2))/ (1-(tan(α/2))^2)
+4(1+(tan(α/2))^2)/(2 tan(α/2))+2(1+(tan(α/2))^2)/ (1-(tan(α/2))^2)
=6+4/ tan(α/2)+2(1+2tan(α/2)+ (tan(α/2))^2)/ (1-(tan(α/2))^2)
=6+4/ tan(α/2)+2(1+ tan(α/2))/ (1- tan(α/2))
=6+(2(tan(α/2))^2-2tan(α/2)+4)/(tan(α/2)-(tan(α/2))^2)
令tan(α/2)=x,x∈(0,1),则:
周长=6+( 2x^2-2x+4)/(x-x^2)
=6-2+4/(x-x^2)
=4+4/(x-x^2),
而x-x^2=-(x-1/2)^2+1/4≤1/4,
所以4+4/(x-x^2)≥4+16=20,
当且仅当x=1/2即tan(α/2)= 1/2时,周长取最小值20.
此时tanα=4/3,sina=4/5,cosa=3/5.
A(5,0),B(0,20/3).
设角OAB=α,α∈(0,π/2),则:
OA=a=2+4/tanα,
OB=b=4+2tanα,
AB=4/sinα+2/cosα,
周长=OA+AB+BO=6+4/tanα+2tanα+4/sinα+2/cosα
=6+4(1-(tan(α/2))^2)/(2 tan(α/2))+(4tan(α/2))/ (1-(tan(α/2))^2)
+4(1+(tan(α/2))^2)/(2 tan(α/2))+2(1+(tan(α/2))^2)/ (1-(tan(α/2))^2)
=6+4/ tan(α/2)+2(1+2tan(α/2)+ (tan(α/2))^2)/ (1-(tan(α/2))^2)
=6+4/ tan(α/2)+2(1+ tan(α/2))/ (1- tan(α/2))
=6+(2(tan(α/2))^2-2tan(α/2)+4)/(tan(α/2)-(tan(α/2))^2)
令tan(α/2)=x,x∈(0,1),则:
周长=6+( 2x^2-2x+4)/(x-x^2)
=6-2+4/(x-x^2)
=4+4/(x-x^2),
而x-x^2=-(x-1/2)^2+1/4≤1/4,
所以4+4/(x-x^2)≥4+16=20,
当且仅当x=1/2即tan(α/2)= 1/2时,周长取最小值20.
此时tanα=4/3,sina=4/5,cosa=3/5.
A(5,0),B(0,20/3).
过(2,4)作直线与坐标轴正半轴交A、B O为原点 求OA+OB+AB的最小值
过点P(4,3)作直线l,直线l与x,y的正半轴分别交于A,B两点,O为原点,当|OA|+|OB|最小时,求直线l的方程
已知圆C:(x-2)2+(y-2)2=2,过原点O作圆C的切线OA、OB,切点依次记为A、B,过原点O引直线l交圆C与D
抛物线y^2=2x与过焦点F的直线交于A,B两点求向量OA*OB(O为原点)
抛物线X^2=4y 与过点M(0,2)的直线L相交于A.B两点,O为坐标原点,若直线OA与OB的斜率之和为2,求直线方程
设直线l:x+y=a与圆x^2+y^2=4相交于AB两点O为原点,求向量OA点向量OB的最小值及实数a
过双曲线x2-y2/3=1的右焦点作直线交于A、B两点,若OA⊥OB(O为坐标原点),求AB所在的直线的方程
设A,B是椭圆x2+3y2=1上的两个动点,且OA OB(O为原点),求|AB|的最大值与最小值.
已知直线l过点P(4'9),且与x轴,y轴的正半轴分别交与A.B两点,O为坐标原点,则OA+OB的最小值为
斜率为2的直线与椭圆x^2/4+y^2=1交于两点A,B,求|OA||OB|范围(O为坐标原点)
抛物线y=-1/2x2与过点M(0,-1)的直线L交于A,B两点,O为坐标原点,若直线OA与OB的斜率之和为1,求直线L
A,B是抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),求证直线AB恒过一定点