如图,点M,N分别在等边三角形ABC的BC、CA边上,且BM=CN,AM,BN交于点Q
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 06:38:55
如图,点M,N分别在等边三角形ABC的BC、CA边上,且BM=CN,AM,BN交于点Q
1、求证∠BQM=60°
2、思考下列问题
(1)如果将原题中的“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
(2)如果将原题中的点M、N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?
(3)如果将题中的“等边三角形ABC”改为“直角等腰三角形ABC,且∠BAC=90°”是否仍能得到∠BQM=60°?
图
1、求证∠BQM=60°
2、思考下列问题
(1)如果将原题中的“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
(2)如果将原题中的点M、N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?
(3)如果将题中的“等边三角形ABC”改为“直角等腰三角形ABC,且∠BAC=90°”是否仍能得到∠BQM=60°?
图
1、由“边角边”相等,推出:三角形BCN = 三角形ABM
故角CBN = 角BAM
由于ABC是等边三角形,故角ABN + 角CBN = 60°
因此,角ABN + 角BAM = 60°
从而,角AQB = 120°
即角BQM = 60度.
2、
(1)即论证:当【点M,N分别在等边三角形ABC的BC、CA边上,且角BQM = 60°,AM,BN交于点Q】时,能否证得 BM=CN.
答:命题为真.理由很简单,逆推回去就行了,就跟证第一个问一样,最后用“角边角”关系证明三角形BCN = 三角形ABM就可以了.
(2)能.画图马上出结果,证明同1.
(3)不能.理由是在开头就不能运用“边角边”相等,推出:三角形BCN = 三角形ABM.从而导致以下证明无法进行.
再问: 。。。没图你们是怎么做的
再答: 自己画啊,你不都说得很清楚了吗? 点M,N分别在等边三角形ABC的BC、CA边上,且BM=CN,AM,BN交于点Q 图就不用了吧……晕 怎么样?看懂了没?不懂可以继续追问^_^
故角CBN = 角BAM
由于ABC是等边三角形,故角ABN + 角CBN = 60°
因此,角ABN + 角BAM = 60°
从而,角AQB = 120°
即角BQM = 60度.
2、
(1)即论证:当【点M,N分别在等边三角形ABC的BC、CA边上,且角BQM = 60°,AM,BN交于点Q】时,能否证得 BM=CN.
答:命题为真.理由很简单,逆推回去就行了,就跟证第一个问一样,最后用“角边角”关系证明三角形BCN = 三角形ABM就可以了.
(2)能.画图马上出结果,证明同1.
(3)不能.理由是在开头就不能运用“边角边”相等,推出:三角形BCN = 三角形ABM.从而导致以下证明无法进行.
再问: 。。。没图你们是怎么做的
再答: 自己画啊,你不都说得很清楚了吗? 点M,N分别在等边三角形ABC的BC、CA边上,且BM=CN,AM,BN交于点Q 图就不用了吧……晕 怎么样?看懂了没?不懂可以继续追问^_^
如图,点M,N分别在等边三角形ABC的BC、CA边上,且BM=CN,AM,BN交于点Q
如图,点M,N分别在等边三角形ABC的BC,CA边上 BM=CN AM BN交于
如图,点MN分别在等边三角形ABC的BC CA边上,且BM=CN,AM BM交于点Q
如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.
点M、N分别在正三角形ABC的BC、CA的边上,且BM=CN.AM,BM交于点Q.求证:∠BQM=60°
如图,△ABC为等边三角形,点M是线段BC上的任意一点,点N是线段CA上任意一点,且BM=CN,直线BN与AM交于点Q.
如图,△ABC为等边三角形,点M,N分别在BC,AC上,且BM=CN,AM与BN交于Q点.求∠AQN的度数.
如图,已知点从M,N分别在等边△ABC的边BC、CA上,AM,BN交于点Q,且∠BQM=60°.求证:BM=CN.
已知△ABC为等边三角形,点M为BC边上的任意一点,点N在射线CA上,且BM=CN,直线BN和AM交于点E.求∠BEM的
已知点从M,N分别在等边三角形如图点M、N分别在等边三角形ABC的BC、CA边上,AM、BN交于点Q.且∠BOM=60°
如图,三角形ABC为等边三角形,点M,N分别在BC,AC上,且BM=CN,AM与N交于点Q.求角AQN的度数
(1)已知:如图1,△ABC为正三角形,点M为BC边上任意一点,点N为CA边上任意一点,且BM=CN,BN与AM相交于Q