原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 09:26:36
原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘OF取值范
因为F(―2,0)是已知双曲线的左焦点,所以a^2+1=4,即a^2=3,所以双曲线方程为 (x^2)/3―y2=1,设点P(x0,y0),则有x0^2/3-y0^2=1(X大于等于根号3) ,解得 y0^2=x0^2/3-1(X大于等于根号3),因为 向量FP=(X0+2,y0) 向量OP=(X0,y0) , ,所以 向量OP*向量FP= 4x0^2/3+2x0-1 ,此二次函数对应的抛物线的对称轴为 ,因为 ,所以当X=根号3 时, 取得最小值 的取值范围是[3+2根号3,正无穷)
原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘
若点O和点F(-2,0)分别是双曲线x^2/a-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点.则向量
点O和F分别为双曲线X^2/3-y^2=1的中心和左焦点,P为双曲线右支上任意一点,则向量OP.向量FP的取值范围是
若点O和F(-2,0)分别为双曲线x^x/(a^a)-y^y=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,
1.若点O和点F分别为椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量op乘向量FP的最大值
若点O和点F分别为椭圆(x^2/4)+(y^2/3)=1的中心和左焦点,点P为椭圆上的任意一点则向量OP*向量FP的最大
若点O和点F(-2,0)分别为双曲线x²/a²-y²=1(a>0)的中心和左焦点,
双曲线C是中心在原点、焦点为F(5,0)的双曲线的右支,已知它的一条渐近线方程是y=x/2
双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)F是右焦点,P为双曲线右支上的一点,P在x轴上方,M为左准线上
设F1、F2是双曲线x^2-y^2/4=1的左、右两个焦点,若双曲线右支上存在一点P,使(向量op+向量of2)向量f2
P是双曲线上一点,双曲线x~/a~--y~/9=1的一条渐近线方程为3x--2y=0,F1,F2分别是左,右焦点,|PF
一:若O和F点分别是椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量OPX向量FP的最大值是