作业帮 > 综合 > 作业

1.在△ABC中,sinA=5/13 cosB=3/5 求cos C的值 2.已知tan(α+β)=3 tan(α-β)

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/09 06:23:26
1.在△ABC中,sinA=5/13 cosB=3/5 求cos C的值 2.已知tan(α+β)=3 tan(α-β)=5 求tan2α tan2β
(1)sinB=4/5>sinA,所以A0,所以cosA=12/13,cosC=cos(π-(A+B))=-cos(A+B)
=-cosAcosB+sinAsinB=-16/65
(2)显然tan(α-β)=5/3,所以
tan2α=tan[(α+β)+(α-β)]=[tan(α+β)+tan(α-β)]/[1-tan(α+β)tan(α-β)]=-10/11
tan2β=tan[(α+β)-(α-β)]=[tan(α+β)-tan(α-β)]/[1+tan(α+β)tan(α-β)]=5/14