作业帮 > 数学 > 作业

已知,如图,AD=BC,AB=DC.O是BD的中点,过点O的直线分别交AD,CB的延长线于E,F.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 07:03:17
已知,如图,AD=BC,AB=DC.O是BD的中点,过点O的直线分别交AD,CB的延长线于E,F.

(1)求证:∠E=∠F

(2)若EF分别交AB、DC于N、M,能否证明EN=FM?

(初一三角形全等知识)

1)证明:∵AD=BC,AB=DC
∴四边形ABCD为平行四边形
∴AD∥BC
∴∠ADB=∠CBD
又∵∠ADB+∠BDE=180°
∠CBD+∠DBF=180°
∴∠BDE=∠DBF
又∵O是BD中点
∴OD=OB
在△EDO和△FBO中
∠BDE=∠DBF
OD=OB
∠EOD=∠FOB
∴△EDO≌△FBO
∴∠E=∠F
2)由(1)可得
∠E=∠F ; DE=BF
∵四边形ABCD为平行四边形
∴AD=BC,∠A=∠C
又∵AE=AD+DE
CF=CB+BF
∴AE=CF
在△AEN和△CFM中
∠E=∠F
AE=CF
∠A=∠C
∴△AEN≌△CFM
∴EN=FM