在圆O中,C为劣弧AB的中点,连接AC并延长至点D,使CD=CA,连接DB,并延长交圆O于点E,连接AE
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:41:45
在圆O中,C为劣弧AB的中点,连接AC并延长至点D,使CD=CA,连接DB,并延长交圆O于点E,连接AE
求证 AE是圆O的直径
求证 AE是圆O的直径
在圆O中连接BC,因为C为劣弧AB的中点,可以得出AC=BC,所以角CAB=角CBA,又因为AC=DC故DC=BC,所以角CBD=角D,因为A 、C 、D 、在一条直线上所以三角形ABD内角和为180°,即角DAB+角D+角DBA=180°,又因为角DAB+角D=角DBA,所以角DBA=90°,即DB垂直于AB,角ABE=90°,又因为OC垂直于AB(C是中点可得),所以OC平行于DE,假如延长AO交圆于F点,连BF则BF为直径,得出角ABF=90°,又因为角ABE=90°,且E也在圆上,故E与F点重合,即AE就是圆O的直径
在圆O中,C为劣弧AB的中点,连接AC并延长至点D,使CD=CA,连接DB,并延长交圆O于点E,连接AE
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE
如图,在圆o中,c是弧AB的中点,连接AC并延长到点D,使CD=CA,连接DB并延长DB交圆o于点E,连接AE,求证:A
如图,在圆心O中C为劣弧AB的中点,连接AC并延长至D使CD=CA,连接BD并延长BD交圆心O于E,连接AE,求证:AE
如图,ab,ac是圆o中相等的两弦,延长ca到点d,使ad=ac,连接db并延长交圆o于点e,连接ce.求证:ce是圆o
AB、AC是圆O内两个相等的弦,延长CA到D,使DA=AC,连接DB并延长交圆O与点E,连接CE.求证CE是圆O的直径
如图,AB,AC是圆心o的两条相等的弦,延长CA到点D,使AD=AC,连接DB并延长交圆心O于点E,连接CE.CE是圆心
1、已知弦AB=AC,延长CA至D,使AC=AD,连接DB并延长交圆O于E,连接CE,求证:CE是圆O的直径
已知如图,D是圆O劣弧AC的中点连结AD并延长AD使DB=AD,连接BC并延长交圆O于E
如图AE是圆O直径D是圆O一点连接AD并延长使AD=DC,连接CE交圆O于点B,连接AB,过点E的直线与AC的延长线
在圆O中.弦AB,CD相交于AB的中点E 连接AD并延长至点F,使DF=AD连接BC,BF
初三圆证明题,AB为圆O的直径,CD为垂直于AB的弦,E为OC的中点,连接AE并延长,交圆O于点F连接DF、CB,相交于