作业帮 > 综合 > 作业

设S=1+2+3+、、、+n (1)则S=n+(n-1)+(n-2)+、、、+1 (2)(1)+(2),得2S=(n+1

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/06 09:43:08
设S=1+2+3+、、、+n (1)则S=n+(n-1)+(n-2)+、、、+1 (2)(1)+(2),得2S=(n+1)+(n+1)+、、、+(n+1)=n(n+1)所以S= 1)利用上述方法或结论证明:1+3+5+、、、+(2n+1)=n22)若1+3+5+、、、+x=361,求x.
设S=1+2+3+4+……+(n-3)+(n-2)+(n-1)+n (1)
则S=n+(n-1)+(n-2)+(n-3)+……+4+3+2+1 (2)
由(1)+(2),所以2S=[n+1]
(n-1)+2]
+[(n-2)+3]
+[(n-3)+4]
+……+[4+(n-3)]
+[3+(n-2)]
+[2+(n-1)]
+[1+n]
=(n+1)+(n+1)+(n+1)+(n+1)+……+(n+1)+(n+1)+(n+1)+(n+1) (n个n+1相加)=(n+1)n
∴2S=(n+1)n
再问: (1)利用上述方法或结论证明:1+3+5+、、、+(2n-1)=n^2 (2)若1+3+5+、、、+x=361,求x。
再答: (1)、1+3+5+…+2n-1 =(1+2n-1)n/2 =n^2 (2)、1+3+5+。。。+(2n-1)= n^2 1+3+5+。。+x=361=19^2 x=2*19-1=37