作业帮 > 数学 > 作业

三角形ABC,AD为BC中线,E为AC上一点.BE与AD交于F,若∠FAE=∠AFE,求证AC=BF.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:53:51
三角形ABC,AD为BC中线,E为AC上一点.BE与AD交于F,若∠FAE=∠AFE,求证AC=BF.
证明:延长FD到M,使DM=DF,连接CM.
又BD=CD,∠CDM=∠BDF,则⊿CDM≌⊿BDF(SAS),得CM=BF;∠M=∠BFD.
又∠BFD=∠AFE=∠FAE,故∠FAE=∠M,得:AC=CM.
所以,AC=BF.(等量代换)