如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为边AC上任意一点(点P不与A、C两点重
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:19:50
如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为边AC上任意一点(点P不与A、C两点重合),作PE⊥PB交AD于点E,交AB于点F.
(1)求证:∠AEP=∠ABP.
(2)猜想线段PB、PE的数量关系,并证明你的猜想.
(3)若P为AC延长线上任意一点(如图②),PE交DA的延长线于点E,其他条件不变,(2)中的结论是否成立?请证明你的结论.
(1)求证:∠AEP=∠ABP.
(2)猜想线段PB、PE的数量关系,并证明你的猜想.
(3)若P为AC延长线上任意一点(如图②),PE交DA的延长线于点E,其他条件不变,(2)中的结论是否成立?请证明你的结论.
证明:(1)∵PE⊥PB,
∴∠EPB=90°,
∵∠BAD=90°,
∴∠AEP=90°-∠1,∠ABP=90°-∠2,
∵∠1=∠2,
∴∠AEP=∠ABP;
(2)PB=PE,
如图3,过P作PM⊥AC交AB与M,
在等腰直角三角形ABC中,∠BAC=45°,
∴∠PAM=∠AMP=45°,
∴PA=PM,
∵∠PAE=45°+90°=135°,∠PMB=180°-45°=135°,
∴∠PAE=∠PMB,
在△AEP和△MBP中
∠PAE=∠PMB
∠AEP=∠ABP
AP=PM,
∴△APE≌△MPB(AAS),
∴PB=PE;
(3)成立;
如图4,过P作PM⊥AB于点M,作PN⊥DA交DA延长线于点N,
∵∠PAB=∠PAN=45°,
∴PM=PN,
∵∠N=∠PMA=∠MAE=90°,
∴四边形ANPM是矩形,∴∠MPN=90°.
∵∠3+∠MPE=∠4+∠MPE=90°,
∴∠3=∠4,
∵∠PMB=∠N=90°,
在△PBM和△PEN中
∠3=∠4
PM=PN
∠PMB=∠N,
∴△PBM≌△PEN(ASA),
∴PB=PE.
∴∠EPB=90°,
∵∠BAD=90°,
∴∠AEP=90°-∠1,∠ABP=90°-∠2,
∵∠1=∠2,
∴∠AEP=∠ABP;
(2)PB=PE,
如图3,过P作PM⊥AC交AB与M,
在等腰直角三角形ABC中,∠BAC=45°,
∴∠PAM=∠AMP=45°,
∴PA=PM,
∵∠PAE=45°+90°=135°,∠PMB=180°-45°=135°,
∴∠PAE=∠PMB,
在△AEP和△MBP中
∠PAE=∠PMB
∠AEP=∠ABP
AP=PM,
∴△APE≌△MPB(AAS),
∴PB=PE;
(3)成立;
如图4,过P作PM⊥AB于点M,作PN⊥DA交DA延长线于点N,
∵∠PAB=∠PAN=45°,
∴PM=PN,
∵∠N=∠PMA=∠MAE=90°,
∴四边形ANPM是矩形,∴∠MPN=90°.
∵∠3+∠MPE=∠4+∠MPE=90°,
∴∠3=∠4,
∵∠PMB=∠N=90°,
在△PBM和△PEN中
∠3=∠4
PM=PN
∠PMB=∠N,
∴△PBM≌△PEN(ASA),
∴PB=PE.
如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为边AC上任意一点(点P不与A、C两点重
1.如图,在等腰直角三角形ABC中,∠C=90°,腰长为1,P是AC上不重于点A、C的任意一点,PQ⊥AB,QR⊥BC,
如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△A
数学课上,张老师出示了问题:如图:△ABC是等腰直角三角形,∠ACB=90°,AB⊥BF,点P为BC上任意一点,且AP⊥
(1)数学课上 张老师出示了问题:如图,△ABC是等腰直角三角形,∠ACB=90°,AB⊥BF,点P为BC上任意一点,且
如图,已知Rt△ABC,∠ACB=90°,AC=BC=1,点P在斜边AB上移动(点P不与点A、B重合),以点P为顶点作∠
如图,已知∠ABC=90°,△ABD是等边三角形,点P为射线BC上任意一点.看图吧
如图,已知∠ABC=90°,△ABD是等边三角形,点P为射线BC上任意一点...看图吧
如图,已知△ABC为等腰直角三角形,∠ACB=90°,AC=BC,点A.C在X轴上,点B的坐标为(3,m)(m>0),线
如图,在等腰直角三角形ABC中,∠ACB=90,P是斜边AB上的一个动点(P不与A,B)
如图,在等腰三角形ABC中,∠ACB=90°,AC=BC.点D是AB上一点(与点B不重合),以CD为边作等腰直角三角形D
1.已知△ABC中,AB=AC=6,P为边BC上任意一点(不与点B点C重合),则