作业帮 > 数学 > 作业

求证 sinαcosβ=1/2[sin(α+β)+sin(α-β)]

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 01:46:12
求证 sinαcosβ=1/2[sin(α+β)+sin(α-β)]
首先将右式的1/2除过来,就变成了:2sinαcosβ=sin(α+β)+sin(α-β).
根据公式:sin(α+β)=sinαcosβ+cosαsinβ 和 sin(α-β)=sinαcosβ-cosαsinβ
将上面的公式代入右边,
此时右式可以化简为:2sinαcosβ=(sinαcosβ+cosαsinβ) + (sinαcosβ-cosαsinβ)
然后:2sinαcosβ=sinαcosβ+(cosαsinβ) + sinαcosβ(-cosαsinβ)
消掉相同项
于是整个式子就变成了:2sinαcosβ=sinαcosβ + sinαcosβ
所以 2sinαcosβ=2sinαcosβ