(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:39:16
(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.
我搞不清楚的是后面那个方程的图形是什么样的,还有我看见参考书上用后面一个方程减去前面一个方程,很是不解,
我搞不清楚的是后面那个方程的图形是什么样的,还有我看见参考书上用后面一个方程减去前面一个方程,很是不解,
图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子
首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,所以立体在xy坐标面上的投影区域是D:x^2+y^2≤2
其次,根据二重积分的几何意义,立体的体积是两个曲顶柱体的体积的差,两个曲顶分别是Z=x^2+2y^2和z=6-2x^2-y^2,很容易判断得到z=6-2x^2-y^2在Z=x^2+2y^2上方
所以,立体的体积V=∫∫(D)[(6-2x^2-2y^2)-(x^2+2y^2)]dxdy,在极坐标系下化为累次积分:V=∫(0~2π)dθ∫(0~√2)(6-3ρ^2)ρdρ=6π
首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,所以立体在xy坐标面上的投影区域是D:x^2+y^2≤2
其次,根据二重积分的几何意义,立体的体积是两个曲顶柱体的体积的差,两个曲顶分别是Z=x^2+2y^2和z=6-2x^2-y^2,很容易判断得到z=6-2x^2-y^2在Z=x^2+2y^2上方
所以,立体的体积V=∫∫(D)[(6-2x^2-2y^2)-(x^2+2y^2)]dxdy,在极坐标系下化为累次积分:V=∫(0~2π)dθ∫(0~√2)(6-3ρ^2)ρdρ=6π
(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.
用三重积分 求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.
重积分:由曲面z=根号下(x2+y2)及z=x2+y2所围成的立体体积
设Ω是由曲面z=2-x2-y2及z=x2+y2所围成的有界闭区域,求Ω的体积.
求由圆柱面x2+y2=2ax,旋转抛物面az=x2+y2及z=0所围成的立体的体积
计算下列曲面所围成立体的体积 z=x2+2y2 和 z=6-2x2-y2
设∑为由曲面z=√x2+y2及平面z=1所围成的立体的表面,则曲面积分∫∫ˇ∑(x2+y2)dS=?
求由曲面z=0及z=4-x^2-y^2所围空间立体的体积?二重积分解
一道高数题:求由曲面Z=X的平方 2Y的平方及Z=6-2X的平方-Y的平方所围成的立体的体积.利用二重积分做!
关于二重积分的一道题原题为:求由曲面z=x^2+2y^2及z=6-2x^2-y^2所围成的立体体积.答案给出的被积函数是
用二重积分计算抛物面x2+y2=z和平面z=1所围的体积
求下列曲面所围成立体的体积:z=x2+y2,y=x2,y=1,z=a(设a充分大)