(2013•松北区三模)如图,直线y=-2x+5分别与x、y轴交于点A、B,经过点C(-2,0)的直线y=x+b与y轴交
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/09 10:41:12
(2013•松北区三模)如图,直线y=-2x+5分别与x、y轴交于点A、B,经过点C(-2,0)的直线y=x+b与y轴交于点D,且直线AB、CD交于点E.
(1)求点E的坐标.
(2)点Q(m,n)为线段AB上一点(与点E不重合),QM∥x轴,交直线CE于点M,设线段QM的长为d,写出d与m的函数关系式(直接写出相应m的取值范围).
(3)在(2)的条件下,点E关于直线QM的对称点为F,当BFC=90°时,求点M的坐标.
(1)求点E的坐标.
(2)点Q(m,n)为线段AB上一点(与点E不重合),QM∥x轴,交直线CE于点M,设线段QM的长为d,写出d与m的函数关系式(直接写出相应m的取值范围).
(3)在(2)的条件下,点E关于直线QM的对称点为F,当BFC=90°时,求点M的坐标.
(1)∵直线y=x+b经过点C(-2,0)
∴0=-2+b b=2
由
y=−2x+5
y=x+2 得
x=1
y=3
∴E(1,3);
(2)∵点Q(m,n)为线段AB上一点,
∴n=-2m+5
如图1,当点Q在BE上时,即0<m<1
∵QM∥x轴∴点M的纵坐标为n,将y=n代入y=x+2=n
解得:x=n-2
∴M(n-2,n)
QM=n-2-m=-2m+5-2-m=-3m+3(0<m<1);
如图2,当点Q在AE上时,即1<m<2.5
QM=3m-3(1<m<2.5).
(3)如图,过点F作GH⊥x轴于点H,作BG⊥GH于点G.
∵△BGH∽△FHC
∴BG:FH=GF:CH
∵点E、点F关于直线QM的对称,
∴设F(1,k)则BG=1,GF=5-k,FH=k,CH=3
1:k=(5-k):3 即k2-5k+3=0
解得:k=
5±
13
2
n=
5±
13
2+3
2=
11±
13
4
∴0=-2+b b=2
由
y=−2x+5
y=x+2 得
x=1
y=3
∴E(1,3);
(2)∵点Q(m,n)为线段AB上一点,
∴n=-2m+5
如图1,当点Q在BE上时,即0<m<1
∵QM∥x轴∴点M的纵坐标为n,将y=n代入y=x+2=n
解得:x=n-2
∴M(n-2,n)
QM=n-2-m=-2m+5-2-m=-3m+3(0<m<1);
如图2,当点Q在AE上时,即1<m<2.5
QM=3m-3(1<m<2.5).
(3)如图,过点F作GH⊥x轴于点H,作BG⊥GH于点G.
∵△BGH∽△FHC
∴BG:FH=GF:CH
∵点E、点F关于直线QM的对称,
∴设F(1,k)则BG=1,GF=5-k,FH=k,CH=3
1:k=(5-k):3 即k2-5k+3=0
解得:k=
5±
13
2
n=
5±
13
2+3
2=
11±
13
4
(2013•松北区三模)如图,直线y=-2x+5分别与x、y轴交于点A、B,经过点C(-2,0)的直线y=x+b与y轴交
如图,已知直线y=x-2与x轴、y轴分别交于点A和点B,另一直线y=kx+b与y轴交于点C(0,7)
如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另一直线y=kx+b(k不等于0)经过点C(1,0),且把三角
如图,已知直线y=-x+2与x轴,y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过点C(1,0),且把△AOB
如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线
如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y= kx+b(k≠0)经过点C
如图,已知直线y=x+6与x轴,y轴分别交于点A,B,另一条直线y=kx+b(k,b为常数,k≠0)经过点C(-3,0)
如图,直线y=-(4/3)x+4与x轴交于点A与y轴交于点C,已知二次函数的图像经过点A、C和点B(-1,0)
(2014•松北区一模)如图,抛物线y=-x2+bx+c与直线y=12x+2交于C、D两点,其中点C在y轴上,点D的坐标
如图(有图),直线y=-2x+8与X轴分别交于点A、B,抛物线y=ax^2+bx(a≠0)经过点A,顶点M在直线y=-2
如图,直线l1:y=-x+b与x轴交于点A,与y轴交于点B,与直线l2:y=-2x交于点(m,6)
已知:如图,直线y=-2x+4的图像与x轴,y轴分别交于A、B两点另外一条直线L经过(-1,0),与线段A、B交于C,并