作业帮 > 综合 > 作业

如图,在三角形ABC中,BE和CD是斜边AC和AB的高 1、∠AED=∠ABC吗?为什么?2、若∠A=60°,求DE/B

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/05 22:33:12
如图,在三角形ABC中,BE和CD是斜边AC和AB的高 1、∠AED=∠ABC吗?为什么?2、若∠A=60°,求DE/BC的值.
1.相等
如图所示 因为 BE和CD是边AC和AB上的高
所以 ∠BDC=∠BEC=90°
又因为 ∠A为公共角
所以 三角形ABE相似于三角形ACD
所以 (对应边成比例) 得AE/AD=AB/AC
所以 (由两边对应成比例及其夹角相等得) 三角形AED相似于三角形ABC
所以 (对应角相等) 得 ∠AED=ABC
2.比值为 0.5
前面已证 三角形ABE相似于三角形ACD
所以 DE/ BC=AD/AC=cos∠A=cos60°=1/2=0.5