过椭圆x^2/4+y^2=1的焦点F作弦AB,求三角形AOB(O是坐标原点)面积的最大值.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 18:39:34
过椭圆x^2/4+y^2=1的焦点F作弦AB,求三角形AOB(O是坐标原点)面积的最大值.
求详解
求详解
椭圆x^2/4+y^2=1,a=2,b=1,c=√3
F1(-√3,0),F2(√3,0)
设椭圆弦AB过F1
直线AB:y=k(x+√3),x=(y-√3k)/k
x^2/4+y^2=1
x^2+4y^2=4
[(y-√3k)/k]^2+4y^2=4
(1+4k^2)y^2-2√3ky-k^2=0
△=(-2√3k)^2-4*(1+4k^2)*(-k^2)=16k^2*(1+k^2)
设yA>yB
yA-yB=√[16k^2*(1+k^2)/(1+4k^2)]
设三角形AOB(O是坐标原点)面积=S,则
S=OF1*(yA-yB)/2=0.5√3*√[16k^2*(1+k^2)]/(1+4k^2)
(16S^2-12)k^4+(8S^2-12)k^2+S^2=0
(1)AB⊥X轴
x=-√3
yA-yB=1
S=√3*1/2=√3/2
(2)AB不⊥X轴
未知k^2的方程有实数解,则它的判别式△≥0,即
[(8S^2-12)]^2-4*(16S^2-12)*S^2≥0
S^2≤1
可知三角形AOB(O是坐标原点)面积的最大值=1
F1(-√3,0),F2(√3,0)
设椭圆弦AB过F1
直线AB:y=k(x+√3),x=(y-√3k)/k
x^2/4+y^2=1
x^2+4y^2=4
[(y-√3k)/k]^2+4y^2=4
(1+4k^2)y^2-2√3ky-k^2=0
△=(-2√3k)^2-4*(1+4k^2)*(-k^2)=16k^2*(1+k^2)
设yA>yB
yA-yB=√[16k^2*(1+k^2)/(1+4k^2)]
设三角形AOB(O是坐标原点)面积=S,则
S=OF1*(yA-yB)/2=0.5√3*√[16k^2*(1+k^2)]/(1+4k^2)
(16S^2-12)k^4+(8S^2-12)k^2+S^2=0
(1)AB⊥X轴
x=-√3
yA-yB=1
S=√3*1/2=√3/2
(2)AB不⊥X轴
未知k^2的方程有实数解,则它的判别式△≥0,即
[(8S^2-12)]^2-4*(16S^2-12)*S^2≥0
S^2≤1
可知三角形AOB(O是坐标原点)面积的最大值=1
过椭圆x^2/4+y^2=1的焦点F作弦AB,求三角形AOB(O是坐标原点)面积的最大值.
如图4过椭圆x^2+2y^2=2的一个焦点(-1,0)作直线交椭圆A,B两点O为坐标原点.求三角形AOB面积的最大值
过点P(-根号3,0)作直线与椭圆3x^2+4y^2=12交于A,B两点,O为坐标原点,求三角形AOB面积的最大值.
过点P(-根号3,0)作直线与椭圆3x^2+4y^2=12交于A,B两点,O为坐标原点,求三角形AOB面积的最大值及此时
过椭圆x^2/2+y^2=1的一个焦点F作直线l交椭圆于A.B两点.椭圆中心为O.当三角形AOB面积最大时,求直线l的方
设经过右焦点F的直线l与椭圆x^2/2+y^2=1交于A,B两点,求三角形AOB的面积最大值.O为原点
抛物线y²=4x焦点为F,过F作弦AB,O是坐标原点,若ΔABO面积是2√2,则弦AB的终点坐标是
过点P(-根号3,0)作直线与椭圆3x^2+4y^2=12交于A,B两点,O为坐标原点,求三角形AOB面积最大值,
过椭圆2X^2+Y^2=2上的焦点F的直线L交椭圆于A、B两点,求ΔAOB(O为原点)面积的最大值.
过椭圆x^2/2+y^2=1的一个焦点F作直线l交椭圆于A,B两点,中心为O当三角形AOB面积最大时,求直线l的方程
过点P(0,2)作直线交椭圆X^2/2+Y^2=1于A、B两点,O为原点.当三角形AOB面积取最大值时,求直线的方程
设点F1是x^2/3+y^2/2=1的左焦点,弦AB过椭圆的右焦点,求三角形F1AB的面积的最大值.