已知P(4,0)是圆x2+y2=36内的一点,A,B是圆上两动点,且满足角APB=90度.求矩形APBQ的顶点Q的轨迹方
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/06 07:12:39
已知P(4,0)是圆x2+y2=36内的一点,A,B是圆上两动点,且满足角APB=90度.求矩形APBQ的顶点Q的轨迹方程.
设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.
又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)
又|AR|=|PR|=根号(x-4)2+y2
所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0
因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.
设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=(x+4)/2 ,y1=(y+0)/2
代入方程x2+y2-4x-10=0,得
((x+4)/2)2+(y/2)2-4*(x+4)/2-10=0
整理得:x2+y2=56,这就是所求的轨迹方程
又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)
又|AR|=|PR|=根号(x-4)2+y2
所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0
因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.
设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=(x+4)/2 ,y1=(y+0)/2
代入方程x2+y2-4x-10=0,得
((x+4)/2)2+(y/2)2-4*(x+4)/2-10=0
整理得:x2+y2=56,这就是所求的轨迹方程
已知P(4,0)是圆x2+y2=36内的一点,A,B是圆上两动点,且满足角APB=90度.求矩形APBQ的顶点Q的轨迹方
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点
已知P(4,0)是圆x^2+y^2=36内的一点,A、B是圆上动点,满足角APB=90°,求矩形APBQ的顶点Q的轨迹方
已知圆的半径为6,圆内一定点P离圆心的距离为4,A,B是圆上两动点且满足∠APB=90°,求矩形APBQ顶点Q的轨迹方程
P(4,0)以原点为圆心,6为半径的圆内一点,A、B是圆上的动点,且角APB=90度,求矩形APBQ顶点Q轨迹方程
已知圆的方程为x2+y2=r2,圆内有一定点P(a,b),A,B是圆周上的两个动点,PA⊥PB,求矩形APBQ的顶点Q的
已知P(4,0)是圆X2+Y2=36内一定点,(2表示平方)A、B是圆上的两个动点,且满足角APB=90度,则AB的中点
已知圆的方程为x+y=r,圆内有定点p(a,b).圆周上有两个动点A,B,使PA垂直PB,求矩形APBQ的顶点Q的轨迹方
直线与园的方程的题已知P(4,0)是圆x^2+y^2=36内的一点,A、B是圆上动点,满足角APB=90°,求矩形APB
已知圆 O:x2+y2=4,圆内有定点P(1,1),圆周上有两个动点A,B,使PA⊥PB,则矩形APBQ的顶点
已知动圆P与定圆B:x2+y2+2根号5x-31=0内切,且动圆P经过一定点A(根号5,0).(1)求动圆圆心P的轨迹方
已知圆○:x2+y2=r2,内一点C(c,0),A、B在圆○上,且角ACB=90°,求AB中点P的轨迹方程