函数f(x)=ax平方 bx c(a不等于0)在x=2处的瞬时变化率为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:40:42
求函数f(x)=x立方+3ax平方+a+5的单调区间

.f'(x)=X的平方+6ax令.f'(x)>0当a>0时,.f(x)的单调递增区间是X>0,X

已知函数f(x)=三分之一x的三次方-x的平方+ax-a

f(x)=(1/3)x³-x²-3x+3f'(x)=x²-2x-3=(x-3)(x+1)令f'(x)=0得x=3或x=-1当x

已知函数f(x)=lnx+ax平方+bx

很标准的导数大题第一问定义域x>0f'(x)=1/x+2ax+b∵曲线y=f(x)在点(1,f(1))处的切线为y=2x-1∴f'(1)=k=2f(1)=2*1-1=1带入方程解得a=0b=1亲,希望

已知二次函数f(x)=ax平方+bx+c

有f(1)=0得a+b+c=0即b=-a-c.①ax^2+bx+c=0的两个根为1和y,有韦达定理得1+y=-b/a,y=c/a.②ax^2+bx+c+a=0有解,得b^2-4a(a+c)≥0.③①代

二次函数证明题证明二次函数f(x)=ax的平方+bx+c(a

方法一:对f(x)求导f'(x)=2ax+b∵x0,即f'(x)>0∴f(x)在(-∞,-b/2a]上是增函数方法二:设x1

f(x)=(-x平方+ax)e的x方.这个函数的导数是多少?

f(x)=(-x2+ax)e^xf'=(-x2+ax)'·e^x+(-x2+ax)·(e^x)'=(-2x+a)e^x+(-x2+ax)e^x=(-x^2-2x+ax+a)e^x

1.函数f(x)=-x平方+2ax-1+a平方

1、因为函数在(-∞,2]上递增,在(2,+∞)上递减所以:函数的对称轴方程是x=2即:-[2a/2*(-1)]=2解得:a=2所以:f(x)=-x²+4x+3所以:f(2)=72、分两种情

函数f(x)=X三次方-ax平方-bx+a平方

f(x)=x三次方-ax平方-bx+a平方f'(x)=3x²-2ax-b∵在x=1有极值10∴f'(1)=0,f(1)=10∴3-2a-b=01-a-b+a²=10即2a+b=3且

已知函数f(x)=-x3次方+ax平方+b,求函数f(x)的单调递增区间

1:求导结果:3X平方+2ax2:因为求递增区间所以3X平方+2ax大于03”当a=0时,3X平方大于0结果X不等于0当a大于0时结果X大于0,或者X小于负3分之2a当a小于0时,X大于负3分之2a或

已知函数f(x)=x平方+2ax+2,x属于[-5,5]

f(x)=x^2+2ax+21)a=-1f(x)=x^2-2x+2=(x-1)^2+1>=1x=1时,取得最小值有对称性知道:f(-5)>f(5)x=1两侧,函数单调!因此函数最值在端点取得!因此:f

设函数f(x)=x(e的x次方-1)-ax的平方.

第一问不赘述了,求一次导数分解因式令其等于零,划分区间,就出来结果了.第二问.求一次导结果为:e^x+xe^x-2ax-1.记为g(x),如果要原函数在x非负是值也为非负,因f(0)=0,所以只要其导

已知二次函数f(x)=ax的平方+x有最小值.不等式f(x)

因为f(x)是二次函数且有最小值所以图象开口向上即a>0(1)f(x)

已知函数f(x)=x的平方+2ax+2,x属于【-5,5】

(1)f(x)=x²-2x+2=(x-1)²+1对称轴x=1最小值f(1)=1最大值f(-5)=37(2)因为f(x)是偶函数所以f(-x)=f(x)x^2-2ax+2=x^2+2

已知函数f(x)=-x平方-ax+3在区间(负无穷,-1]上是增函数.

f(x)=-x^2-ax+3=-(x+a/2)^2+3+a^2/4对称轴为x=-a/2,x^2项系数=-1

已知函数f(x)=-x平方-ax+3在区间(负无穷,-1]上是增函数

f(x)=-x^2-ax+3=-(x+a/2)^2+3+a^2/4对称轴为x=-a/2,x^2项系数=-1

已知函数f(x)=x的平方/ax+b为奇函数,f(1)

已知函数f(x)=(x^2+c)/(ax+b)为奇函数,f(1)

设函数f(x)=2ax(平方)-ax,f(x)=-6,则a=

f(x)=-6是不是写掉了条件哦还有X的定义域呢?

已知函数f(x)=ax*2(平方)+2ax+4(0

f(x2)-f(x1)=a(x2^2-x1^2)+2a(x2-x1)=a(x2+x1)(x2-x1)+2a(x2-x1)=a(1-a)(x2-x1)+2a(x2-x1)=a(3-a)(x2-x1)因为

设函数f(x)=ax平方+bx+1(a,b为实数) F(x)={f(x),x>0 -f(x),x0,n0 a>0,f(x

(1)由题意,当x>0时,F(x)=f(x)=ax²+bx+1,∴F(1)=a+b+1=4,即a+b=3;当x0,n0f(x)为偶函数,b=0当x>0时,F(x)=x²+1,当x0