在△ABC中 a2 c2=b2 根号2ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:39:01
由a4+b2c2=b4+a2c2得:a4-b4=a2c2-b2c2,(a2+b2)(a2-b2)=c2(a2-b2),∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2-b2)(a2+b
解析,由c²=a²+b²-2ab*cosC【余弦定理】c²=a²+b²-ab,故cosC=1/2即是C=60°.S△ABC=1/2*ab*s
由余弦定理得cosB=(a²+c²-b²)/(2ac)cosA=(b²+c²-a²)/(2bc)得到(a²+c²-b&s
根据正弦定理:a/sinA=b/sinB→sinA/sinB=a/b由题意可得:a/b=√2/1→a=√2b根据余弦定理:cosA=(b^2+c^2-a^2)/2bccosA=[b^2+(b^2+√2
由b2-bc-2c2=0因式分解得:(b-2c)(b+c)=0,解得:b=2c,b=-c(舍去).又根据余弦定理得:cosA=b2+c2−a22bc=b2+c2−62bc=78,化简得:4b2+4c2
因为在△ABC中,a2=b2+c2+bc,所以cosA=-12,所以A=120°.故答案为:120°.
∵(a2+b2)sin(A-B)=(a2-b2)sinC,∴(a2+b2)(sinAcosB-cosAsinB)=(a2-b2)(sinAcosB+cosAsinB),可得sinAcosB(a2+b2
题中a2+b2+c2应是a2+b2-c2吧,利用面积公式及余弦定理可得(absinC)/2=(2abcosC)/4又根号3,所以tanC=√3/3,C=30°.
根据余弦定理,c^2=a^2+b^2-2abcosC,c^2=2√3absinC-a^2-b^2,二式联立,2a^2+2b^2=2abcosC+2√3absinC,√3sinC+cosC=(a^2+b
∵a2+b2=c2-ab,即a2+b2-c2=-ab,∴由余弦定理得:cosC=a2+b2−c22ab=−ab2ab=-12,又C为三角形的内角,即0<C<180°,则C=120°.故答案为:120
根据余弦定理可知cosA=c2+b2−a22bc∵a2=b2+bc+c2,∴bc=-(b2+c2-a2)∴cosA=-12∴A=120°故选A
由余弦定理,得c2=a2+b2-2abcosC.∵a2+b2=c2+ab,∴ab-2abcosC=0.∴cosC=12,∴C=60°∵sinAsinB=34,cos(A+B)=cos(180°-C)=
1.cosC=(a^2+b^2-c^2)/(2ab)=√2ab/(2ab)=√2/2C=45度2.tanB/tanC=(2a-c)/c=(2sinA-sinC)/sinCsinBcosC/(cosBs
由已知S△ABC=[(b^2+c^2-a^2)/4]根号3又S△ABC=1/2*bcsinA根据三角形的余弦定理得:cosA=(b^2+c^2-a^2)/(2bc)由上面的三个式子得:tanA=根号3
在三角形abc中,cos2A/a²-cos2B/b²=(1-2sin²A)/a²-(1-2sin²B)/b²=[1/a²-1/(2
在三角形abc中,cos2A/a-cos2B/b=(1-2sinA)/a-(1-2sinB)/b=[1/a-1/(2R)]-[1/b-1/(2R)]=1/a-1/
由余弦定理:cosC=(a²+b²-c²)/2ab又因为,S△ABC=(1/2)*ab*sinC由题知S△ABC=(a²+b²-c²)/(4
∵a2-c2+b2=ab∴cosC=a2+b2−c22ab=12∵C∈(0,π)∴C=π3故答案为:π3.
由c2=a2+b2+ab,余弦定理得:cosC=b2+a2−c22ab=−ab2ab=-12.故选:B.
根据余弦定理,c^2=a^2+b^2-2abcosCa2+b2+根号3ab-c2=0根号3ab=-2abcosCcosC=-根号3/2C=150度