如图,已知点E在RT三角形的斜边AB上,以AE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:01:25
∵AC+GC=5(AC+GC)²=AC²+GC²+2AC*GC=25由弦切角定理可得角CEG=∠2∴△CGE∽△CEA∴CG:CE=CE:CA∴AC*CG=CE²
因D,E分别是AB,BC的中点,故DE是三角形ABC的中位线,DE‖CF,而已知DE=CF,故四边形DEFC是平行四边形,∴CD‖EF.
∵DE垂直平分BC∴BE=CE(1分)∴∠EBD=∠C=x(1分)∵∠A=90°,D为BC的中点∴AD=DC(1分)∴∠DAC=∠C=x(1分)∴∠ADB=2x(1分)∵∠AFB=∠EBD+∠ADB(
30度再问:过程?再答:连接BE再问:哦
证明:DF║BC即DF║CE &n
证明:∵∠ACE=90°,DE垂直平分BC,∴DF∥AC,AE=CE,∴∠B=∠BCE,∵∠B+∠BAC=90°,∠ACE+∠BCE=90°,∴∠BAC=∠ACE,∴AE=CE=AE,∵∠BAC=60
再问:哦谢谢再问:能再完整点吗QUQ
⑴证明:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ACD=∠B,∵E为AC中点,∴DE=1/2AC=CE,∴∠FDC=∠ACD=∠B,又∠F=∠F,
证明:在RT三角形ADC中∠DCE=∠CAD即∠BCF=∠CAD又BF平行于AC,所以∠FBC=∠DCA=90°因为:AC=BC所以:RT三角形FBC全等于RT三角形DCA所以:BF=DC=BD三角形
(1)DE平行于BC,三角形ABC相似于三角形ADE由于△ADE和△BDE底分别为AD和DB,两三角形高相同,所以面积比等于两个底之比即S△ADE/S△BDE=AD/DB.设三角形BDE的面积为x.可
用角边角证明三角形BCE全等于三角形DCE(角bce=角dce=45度,角bec=角dec=90度,边ce=边ce)这样可得be=ce,所以原命题得证.不懂的追问~再问:怎么证明两个三角形全等呢再答:
这道题在求解答网上有 我只能截取一部分 你剩下的到里面看看吧
连接AE、CE∵DE是AC的垂直平分线∴AE=CEAD=CD=1/2AC=1/2√(AB²+BC²)=1/2√(5²+12²)=13/2AE²=AB&
应是求(c1+c2)/c3的最大值这三个三角形都相似:C2,C3所在三角形显然相似,由于∠BED=∠CFB,则△CEF为等腰三角形;因此CG也是高,进而C1所在三角形也与上述二△相似;则(C1+C2)
∵∠A=∠ADM=30°,∴MA=MD.又MG⊥AD于点G,中的结论成立.如图9,在Rt△AMG中,∠A=30三角形DGM和NHD相似所以DH=(根号3)MGAG=(
(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E
8/3设AD为x,则AO为根号x平方加OB,故AC:AD等于BC:OD,代入数据.
∵∠BAC=90∴∠ABD+∠ADB=90,∠CAF=∠BAC=90∵∠CDE=∠ADB∴∠ABD+∠CDE=90∵CF⊥BD∴∠ACF+∠CDE=90∴∠ABD=∠ACF∵AB=AC∴△ABD≌△A
解题思路:本题目主要考查了菱形的判定定理和方法。1、定义。2、四边相等。3、对角线花香垂直平分解题过程: