微分方程xy导数-y=x平方满足y(1)=2的特解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:05:23
求解微分方程 x^2*dy/dx=xy-y^2

x^2*dy/dx=xy-y^2dy/dx=y/x-y^2/x^2u=y/xy=xuy'=u+xu'代入:u+xu'=u+u^2xu'=u^2du/u^2=dx/x-1/u=lnx+lnCCx=e^(

求微分方程y'-xy=e的二分之一的x平方通解

求积分因子M(x)=e^∫(-x)dx=e^(-x^2/2)两边乘M(x),得(y'-xy)e^(-x^2/2)=1[y*e^(-x^2/2)]'=1y=(x+C)e^(x^2/2).

微分方程y'=xy+x+y+1的通解是?

dy/dx=xy+x+y+1dy/dx=(x+1)(y+1)分离变量dy/(y+1)=dx*(x+1)两边积分ln(y+1)=(x²/2)+x+lnC两边取以e为底的幂y+1=Ce^[(x&

解微分方程 (x^2y^3+xy)dy=dx

令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³

求微分方程xy'-y=e^(x-1/x)

左右除以x^2,y'/x+y(1/x)'=e^(x-1/x).左边就是(y/x)',两边关于x积分就能得到y=x(右边的不定积分+C).不过e^(x-1/x)不定积分没有初等函数表示啊……是不是抄错了

求微分方程xy'+y=x的平方+3x+2的通解,

注意左边可以写成(xy)'于是,原方程等价于(xy)'=x²+3x+2得xy=x³/3+3x²/2+2x+C得通解y=x²/3+3x/2+2+C/x

求微分方程的通解-Y"-Y=SIN平方X

我说说方法,你自己算右边化为SIN平方X=1/2-1/2COS2X先解方程Y”+Y=1/2得Y=1/2再解方程Y”+Y=1/2COS2X方法是令Y=C1(X)*SIN2X+C2(X)*COS2X代入方

微分方程求解 (x^2y^3+xy)dy=dx

令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³

求解微分方程(1+X平方)y‘-2xy=1+x平方的通解

套公式吧一般情况下:y'+p(x)y=q(x)那么其解的公式为:y=e^[-∫p(x)dx]{∫q(x)*e^[∫p(x)dx]dx+C}将原方程变形得y'-2x/(1+x^2)y=1p(x)=-2x

【【求解微分方程】】xy'+y=x^2+3x+2

xdy+ydx-(x^2+3x+2)dx=0设dz(x,y)=xdy+ydx-(x^2+3x+2)dx∂z/∂y=x,z=xy+g(x),∂z/∂x=y

紧急!x+y-3^xy=0 求微分方程

答案,X=1Y=0或者X=0Y=1再问:是求微分。不是微分方程。答案是dxdy-3^(xy)•ln3(dx•ydy•x)=0再问:求过程

微分方程xy'+y=x^2的通解

xy'+y=x^2(xy)'=x^2xy=x^3/3+Cy=x^2/3+C/x

可降解高阶微分方程1.xy''=y'ln(y'/x) 2.yy''-(y')平方=y平方y' 不要只写出结果,重要的是过

这个第一道应该是令y'=p然后y''=dp/dx的x*dp/dx=p*ln(p/x)然后解出p对P积分即可得到答案第二道也是令y'=p的y''=dp/dx*dy/dy=dp/dy*dy/dx=p*dp

求微分方程xy'-y-√y^2-x^2=0的通解 √是根号 ^2是平方

∵xy'-y-√(y²-x²)=0==>y'-y/x-√(y²/x²-1)=0∴设y=xt,则y'=xt'+t代入方程得xt'-√(t²-1)=0==

求微分方程xy'-2y=5x的通解,

再问:多谢!!!

求齐次微分方程dy/dx=y^2/xy-x^2

令y=xuy'=u+xu'代入方程:u+xu'=u^2/(u-1)xu'=u/(u-1)du(u-1)/u=dx/xdu(1-1/u)=dx/x积分;u-ln|u|=ln|x|+C1e^u/u=Cxe

求微分方程的通解.x^2 y"+xy'=1

令f(x)=x*y'f'=y'+xy''xf'=xy'+x^2y''=1f'=1/xf=lnx+c1xy'=lnx+c1y'=lnx(1/x)+c1/xy=1/2*(lnx)^2+c1*lnx+c2再

求(1+x平方)ey次方y的导数-2x(1+e的y次方)=0的微分方程的通解

(1+x^2)e^yy'-2x(1+e^y)=0令u=1+e^y则u'=e^y*y'代入方程得:(1+x^2)u'-2xu=0因此有:du/u=2xdx/(1+x^2)即:du/u=d(x^2)/(1