设F1,F2是双曲线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 05:29:07
设F1,F2分别是椭圆x

由题意F2(3,0),|MF2|=5,由椭圆的定义可得,|PM|+|PF1|=2a+|PM|-|PF2|=10+|PM|-|PF2|≤10+|MF2|=15,当且仅当P,F2,M三点共线时取等号,故答

设F1,F2是双曲线x

由题意x29−y216=1,可得F2(5,0),F1(-5,0),由余弦定理可得 100=PF12+PF22-2PF1•PF2cos60°=(PF1-PF2)2+PF1•PF2=36+PF1

设F1,F2是双曲线x^2/4-y^2=1的两个焦点,点P在双曲线上

1、a²=4,b²=1c²=a²+b²=5令PF1=m,PF2=n则|m-n|=2a=4平方m²-2mn+n²=16F1F2=2c

高中数学椭圆与双曲线设F1,F2是双曲线x^2-24分之Y^2的两个焦点,p点是双曲线的一点,且3PF1=4PF2,则三

设|PF1|=m,|PF2|=nm-n=2,3m=4n,m=8,n=6.2c=10,直角三角形,面积为6*8/2=24再问:m-n=2,为什么???再答:双曲线的定义。。。再问:那一个定义??详细点行

设椭圆与双曲线有共同的焦点F1(-1,0) F2(1,0)

椭圆长轴是双曲线实轴的2倍,即:|PF1+PF2|=2|PF1-PF2|即:((x+1)^2+y^2)^(1/2)+((x-1)^2+y^2)^(1/2)=2|((x+1)^2+y^2)^(1/2)-

设P为双曲线x2-y212=1上的一点,F1,F2是该双曲线的两个焦点,若|PF1|:|PF2|=3:2,则△PF1F2

设|PF1|=3x,|PF2|=2x,则3x-2x=2a=2,解得x=2.∴△PF1F2的三边长分别为6,4,213.∵62+42=(213)2,∴∠F1PF2=90°.∴△PF1F2的面积=12×6

设e1,e2分别是具有公共交点F1,F2的椭圆和双曲线的离心率,P是一个公共点,且线段PF1和PF2垂直

很简单,只要将题目的条件都转化为代数式然后进化化简即得结果设椭圆的长半轴是a1,双曲线的实半轴是a2,它们的半焦距是c并设PF1=m,PF2=n,m>n,根据椭圆的和双曲线的定义可得m+n=2a1m-

设双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别是F1、F2,过点F2的直线交双曲线右支于不同的两点M、

由题意可知,M,N关于x轴对称,∴|NF2|=b2a,|F1F2|=2c,∵△MNF1为正三角形,结合双曲线的定义,得到MF1=MF2+2a,∴(b2a+a×2)×32=2c,∴3(c2+a2)=4a

已知F1、F2是双曲线x

因为双曲线方程为x216−y29=1,所以2a=8.由双曲线的定义得|PF2|-|PF1|=2a=8,①|QF2|-|QF1|=2a=8.②①+②,得|PF2|+|QF2|-(|PF1|+|QF1|)

设F1和F2为双曲线x2/a2-y2/b2=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个

由题意得:2c:2b=2:√3∴b=√3c/2∴b²=3c²/4∴e²=c²/a²=c²/(c²-b²)=c²

设F1,F2分别是双曲线 的左、右焦点.若双曲线上存在点A,使∠F1AF2=90º,且|AF1|=3|AF2|

由双曲线定义,有:|PF1|-|PF2|=2a,又|PF1|=3|PF2|,∴2|PF2|=2a,∴a=|PF2|.∵∠F1PF2=90°,∴|PF1|^2+|PF2|^2=|F1F2|^2=4c^2

设F1,F2是椭圆C:x

∵F1,F2是椭圆Cx2a2+y2b2=1(a>b>0)的左、右焦点,过F1的直线l与C交于A,B两点,AB⊥AF2,|AB|:|AF2|=3:4,如图:∴不妨令|AB|=3,|AF2|=4,再令|A

设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2

x^2-y^2/24=1,则双曲线a=1,c=5|F1F2|=10,定义,||PF1|-|PF2||=2a=2又|PF1|+|PF2|=14故|PF1|=8,|PF2|=6或|PF1|=6,|PF2|

F1.F2是定点P是以F1.F2为公共焦点的椭圆和双曲线交点,F1垂直F2,e1.e2是椭圆.双曲线离心率

F1P垂直F2P设椭圆的方程x^2/a^2+y^2/b^2=1双曲线的方程x^2/m^2-y^2/n^2=1F1P+F2P=2aF1P^2+2F1PF2P+F2P^2=4a^2(1)F1P-F2P=2

3.设F1,F2分别是双曲线的左右两焦点,若双曲线上存在点A使向量AF1·AF2=0 且|AF1

根号10/2设AF2=x利用第一定义的2a等于2x即a=x再由勾股定理得c等于根号10/2x之后可得e=根号10/2

已知F1,F2是双曲线x

∵双曲线方程为x22-y2=1,∴a2=2,a=2∵P、Q为双曲线右支上的两点,∴|PF1|-|PF2|=2a=22,,|QF1|-|QF2|=2a=22,∴|PF1|-|PF2|+|QF1|-|QF

设双曲线x^2/a^2-y^2/b^2=1的左右焦点为F1,F2,P是双曲线右支上的一点

设内切圆与PF1切于A,与PF2切于B,则|PA|=|PB|,|F1A|=|F1Q|,|F2B|=|F2Q|因为|F1Q|=|F1O|+|OQ|,所以|F1O|=|F1Q|-|OQ|=4-1=3,即c

设F1,F2分别是双曲线x2-y

设|PF1|=m,|PF2|=n,则|m-n|=2①,m2+n2=40②,②-①2可得2mn=36,∴mn=18,设P点纵坐标为y,则12•210|y|=12•18,∴|y|=91010,∴y=±91

设双曲线的中心在坐标原点,对称轴是坐标轴,F1、F2是左、右焦点,是双曲线上一点,且∠F1PF2=600,S

不妨设点P在双曲线的右支上,设双曲线的方程为x2a2−y2b2=1,|PF1|=m,|PF2|=n则有m-n=2a①∠F1PF2=600由余弦定理得m2+n2-2mncos60°=4c2②∵S△PF1

设F1、F2是双曲线x^2-y^2/4=1的左、右两个焦点,若双曲线右支上存在一点P,使(向量op+向量of2)向量f2

由已知,(向量op+向量of2)向量f2p=0(o为坐标原点)得|0P|=|OF2|,即三角形OPF2是等腰三角形.连接PF1,则OP=(1/2)|F1F2|,所以三角形PF1F2是直角三角形.设PF