设F1,F2是双曲线x^2/4-y^2=1的两个焦点,点P在双曲线上
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 12:14:30
设F1,F2是双曲线x^2/4-y^2=1的两个焦点,点P在双曲线上
若∠F1PF2=120°,求三角形F1PF2的面积
求|PF1||PF2|的面积
求|PF1||PF2|的最小值。上边写错啦。
若∠F1PF2=120°,求三角形F1PF2的面积
求|PF1||PF2|的面积
求|PF1||PF2|的最小值。上边写错啦。
1、
a²=4,b²=1
c²=a²+b²=5
令PF1=m,PF2=n
则|m-n|=2a=4
平方
m²-2mn+n²=16
F1F2=2c=2√5
余弦定理
cos120度=-1/2=(m²+n²-F1F2²)/(2mn)
所以m²+n²-20=-mn
代入m²-2mn+n²=16
-mn+20-2mn=16
mn=4/3
所以面积=1/2mnsin120=√3/3
2、
令PF1=m,PF2=n
则|m-n|=2a=4
平方
m²-2mn+n²=16
m²+n²=16+2mn
当P在顶点时,角F1PF2是平角
cosF1PF2有最小值-1
所以cosF1PF2>=-1
cosF1PF2=(m²+n²-F1F2²)/(2mn)
=(2mn-4)/(2mn)
=1-2/(mn)>=-1
2/(mn)=1
所以mn最小值=1
a²=4,b²=1
c²=a²+b²=5
令PF1=m,PF2=n
则|m-n|=2a=4
平方
m²-2mn+n²=16
F1F2=2c=2√5
余弦定理
cos120度=-1/2=(m²+n²-F1F2²)/(2mn)
所以m²+n²-20=-mn
代入m²-2mn+n²=16
-mn+20-2mn=16
mn=4/3
所以面积=1/2mnsin120=√3/3
2、
令PF1=m,PF2=n
则|m-n|=2a=4
平方
m²-2mn+n²=16
m²+n²=16+2mn
当P在顶点时,角F1PF2是平角
cosF1PF2有最小值-1
所以cosF1PF2>=-1
cosF1PF2=(m²+n²-F1F2²)/(2mn)
=(2mn-4)/(2mn)
=1-2/(mn)>=-1
2/(mn)=1
所以mn最小值=1
设F1,F2是双曲线x^2/4-y^2=1的两个焦点,点P在双曲线上
已知F1,F2是双曲线(x^2/4)-(y^/21)=1的两个焦点,点P在双曲线上若PF1=6,则PF2=?
F1、F2是双曲线x^2/16-y^2/9=1的焦点,点P在双曲线上,若点P到焦点F1的距离等于
设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2
第一题 设F1 F2 为双曲线X²/4-y²=1 的两个焦点,点P在双曲线上,且满足角F1PF2=9
设F1,F2为双曲线x²/4-y²=1的两个焦点,点P在双曲线上,且满足角F1PF2=90
双曲线x^2/4-y^2/b^2=1的两个焦点为F1,F2,点P在双曲线上,若|PF1||F1F2||PF2|成等差数列
设F1,F2为双曲线x^2/4 - y^2=1的两个焦点,点P在双曲线上,且满足向量PF1*向量PF2=0 则三角形F1
设f1和f2为双曲线x2/4-y2=1的两个焦点,点p在双曲线上,使得
设F1,F2分别为双曲线x^2/16-y^2/20=1的左,右焦点,点P在双曲线上,若点P到焦点F1的距离等于9,则点P
双曲线x^2/9-y^2/16=1的两个焦点为F1,F2,点P在双曲线上,若PF1⊥PF2
已知F1.F2分别为双曲线x^2/9 - y^2/16 =1的左右两个焦点,且点P在双曲线上