设α∈R,f(x)=cosx(asinx-cosx)+cos2( π 2 -x)满足f(- π 3 )=f(0),求函数
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:07:49
设α∈R,f(x)=cosx(asinx-cosx)+cos2( π 2 -x)满足f(- π 3 )=f(0),求函数f(x)在[ π 4 ,11π 24 ]
、
上的最大值和最小值
、
上的最大值和最小值
f(x)=cosx(asinx-cosx)+cos2(π/2-x)
=a/2*sin2x-cos²x+cos(π-2x)
f(0)=-2
f(-π/3)=-√3a/4-1/4+1/2
f(0)=f(-π/3) 则a=3√3
f(x)=3√3/2sin2x-1/2 cos2x+1/2+cos2x
f(x)=3sin(2x+π/6)+1/2
x∈[ π/4 ,11π/24]
2x+π/6∈[2π/3,13π/12]
sin(2x+π/6)∈[-0.26,√3/2]
f(x)的最大值:(3√3+1)/2
f(x)的最小值:-0.28
=a/2*sin2x-cos²x+cos(π-2x)
f(0)=-2
f(-π/3)=-√3a/4-1/4+1/2
f(0)=f(-π/3) 则a=3√3
f(x)=3√3/2sin2x-1/2 cos2x+1/2+cos2x
f(x)=3sin(2x+π/6)+1/2
x∈[ π/4 ,11π/24]
2x+π/6∈[2π/3,13π/12]
sin(2x+π/6)∈[-0.26,√3/2]
f(x)的最大值:(3√3+1)/2
f(x)的最小值:-0.28
设α∈R,f(x)=cosx(asinx-cosx)+cos2( π 2 -x)满足f(- π 3 )=f(0),求函数
设α∈R,f(x)=cosx(asinx-cosx)+cos^(π\2-x)满足f(-π\3)=f( 0分
设α∈R,f(x)=cosx(asinx-cosx)+cos^(π\2-x)满足f(-π\3)=f(0)
设α∈R,f(x)=cosx(asinx-cosx)+cos^(π\2-x)满足f(-π\3)=f(0)求函数的单调递增
(2011•江西模拟)设a∈R,f(x)=cosx(asinx−cosx)+cos2(π2−x)满足f(−π3)=f(0
f(x)=cos(asinx-cosx)+cos^2(π/2-x)满足f(-π/3)=f(0),求函数f(x)在[π/4
已知向量m=(asinx,cosx),n=(sinx,bcosx),其中a,b,x∈R,设函数f(x)=m*n满足f(π
设函数f(x)=cosx+asinx-a/4-1/2(0≤x≤π/2).
设函数f(x)=sinxcosx-根号3cos(x-π)cosx (x∈R),(1)求函数最小正周期(2)若y=f(x)
设函数f(x)=sinxcosx-√3cos(π+x)cosx(x∈R) .
设函数f(x)=sinxcosx-√3COS(π+x)cosx(x∈R)
设函数f(x)=√3sinx+cosx,x∈R,(1)求f(x)的值域和周期(2)在△AB3sinx+cosx,x∈R,