作业帮 > 数学 > 作业

已知a1=2点(an,an+1)在函数f(x)=x2+2x的图像上,其中n=1,2,3...(1)证明数列{lg(1+a

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 21:39:32
已知a1=2点(an,an+1)在函数f(x)=x2+2x的图像上,其中n=1,2,3...(1)证明数列{lg(1+an)}是等比数列
点(an,an+1)在函数F(x)=x2+2x的图像上,
所以an+1=(an)^2+2an
即(an+1)+1=[(an)+1]^2
所以lg(1+an)=2lg[(an-1)+1]
故{lg(1+an)}是首项为lg3,公比为2的等比数例
2.由1)知{lg(1+an)}是等比数列
所以lg(Tn)=lg[(1+a1)(1+a2)...(1+an)]=lg(1+a1)+lg(1+a2)+...+lg(1+an)
=(2^n-1)lg3
lg(1+an)=2^(n-1)lg3
所以an=3*10^[2^(n-1)]-1