如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 14:45:05
如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
(1)四边形EFGH是菱形.(2分)
(2)成立.(3分)
理由:连接AD,BC.(4分)
∵∠APC=∠BPD,
∴∠APC+∠CPD=∠BPD+∠CPD.
即∠APD=∠CPB.
又∵PA=PC,PD=PB,
∴△APD≌△CPB(SAS)
∴AD=CB.(6分)
∵E、F、G、H分别是AC、AB、BD、CD的中点,
∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.
∴EF=
1
2BC,FG=
1
2AD,GH=
1
2BC,EH=
1
2AD.
∴EF=FG=GH=EH.
∴四边形EFGH是菱形.(7分)
(3)补全图形,如答图.(8分)
判断四边形EFGH是正方形.(9分)
理由:连接AD,BC.
∵(2)中已证△APD≌△CPB.
∴∠PAD=∠PCB.
∵∠APC=90°,
∴∠PAD+∠1=90°.
又∵∠1=∠2.
∴∠PCB+∠2=90°.
∴∠3=90°.(11分)
∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,
∴GH∥BC,EH∥AD.
∴∠EHG=90°.
又∵(2)中已证四边形EFGH是菱形,
∴菱形EFGH是正方形.(12分)
如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,
如图,已知点P是线段AB上的一点,△APC与△BPD都是等边三角形
如图一,p是线段ab上的一点,△APC与△BPD是等边三角形.
已知,如图,P为AB上一点,△APC和△BPD都是等边三角形,求证:AD=BC.
如图所示,已知AB=20,P是线段AB上任意一点,在AB同侧分别以AP和PB为边作等边△ACP和等边△BPD,求线段CD
如图,P是平行四边形ABCD内的一点,连接PA,PB,PC,PD及AC,求证:S△APC=S△APB-S△APD
如图:AB是圆的直径,P是AB上的任意一点,C和D是圆O上的两个点,且弧AC=弧AD,连接PC,PD,说明∠APC=∠A
如图,已知点P是线段AB上的一点,△APC与△BPD都是等边三角形,(1)请猜想AD与BC相等吗?证明你的猜想.
求一数学题的解...如图.P是 平行四边形ABCD 内的一点,连接 PA PB PC PD 以及AC ,求证:S△APC
平行四边形ABCD中,AC、BD相交于点O,P是平行四边形ABCD外的一点,且∠APC=∠BPD=90° 求:四边形AB
如图,在△ABC中,AB=AC,P是△ABC内一点,且∠APB>∠APC,试着说明PB<PC.
如图,已知:在△ABC中,AB=AC,P是三角形内一点且有∠APB>∠APC.求证PC>PB