已知曲线C1:y=x^2与C2:y=-(x-2)^2 ,直线l与C1.C2相切,求l
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 01:35:04
已知曲线C1:y=x^2与C2:y=-(x-2)^2 ,直线l与C1.C2相切,求l
这题一开始先分别求导,然后联立,求出斜率等于2.然后设出直线方程,然后怎么解了.
这题一开始先分别求导,然后联立,求出斜率等于2.然后设出直线方程,然后怎么解了.
关键是设切点
设C1:y=x^2与直线相切于点A(a,a²)
C2:y=-(x-2)^2 与直线相切于点B(b,-(b-2)²)
于是根据两点可以求出切线斜率
也就是 k=【a²+(b-2)²】/【a-b】
还有就是分别求导
y=x^2求导
y'=2x,于是 k=y'=2a
还有y=-(x-2)^2 求导就得
y'=-2(x-2),于是 k=y'=-2(b-2)
三个k都相等
于是有关系
2a=-2(b-2)
2a=【a²+(b-2)²】/【a-b】
两条方程解出a,b
也就是知道了A,B坐标
然后通过A,B两点列出两点式就是切线方程
设C1:y=x^2与直线相切于点A(a,a²)
C2:y=-(x-2)^2 与直线相切于点B(b,-(b-2)²)
于是根据两点可以求出切线斜率
也就是 k=【a²+(b-2)²】/【a-b】
还有就是分别求导
y=x^2求导
y'=2x,于是 k=y'=2a
还有y=-(x-2)^2 求导就得
y'=-2(x-2),于是 k=y'=-2(b-2)
三个k都相等
于是有关系
2a=-2(b-2)
2a=【a²+(b-2)²】/【a-b】
两条方程解出a,b
也就是知道了A,B坐标
然后通过A,B两点列出两点式就是切线方程
已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.
已知曲线C1:y=x^2与C2:y=-(x-2)^2 ,直线l与C1.C2相切,求l
已知曲线C1:y=x2与C2:y=-(x-2)2直线l与C1 C2都相切,求直线l的斜率
曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程
用导数解:已知曲线c1:y=x^2,c2 :y=-(x-2)^2,直线l与C1c2,相切,求直线方程
导数的运算已知曲线C1:y=x²与C2:y=-(x-2)²,直线l与C1、C2都相切直线l方程.问当
求与曲线C1:y=x^2与C2:y=-(x-1)^2都相切的直线L的方程
已知曲线C1:y=e^x与C2:y=-1/e^x,若直线l是C1,C2的公切线,试求l的方程
已知曲线C1:y=X^2,C2:y=2x^2-3x+3,直线l:y=kx+m,l与C1和C2有四个交点,从左向右依次是A
已知圆C1:x^2+y^2=2和圆C2,直线l与圆C1相切于点(1,1),圆C2的圆心在射线2x-y=0(x>=0)上,
已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点
已知圆C1:x2+(y+5)2=5,点A(1,-3).①求过点A与圆C1相切的直线L的方程;②设圆C2为圆C1关于直线L