帮忙算一下∫dx/[x+√(x^2-1)]
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 15:31:41
帮忙算一下∫dx/[x+√(x^2-1)]
x=sect,则
∫dx/[x+√(x^2-1)]
=∫sect*tantdt/(sect+tant)
=∫sect*tant(sect-tant)dt
=∫[(sect)^2tant-sect(tant)^2]dt
=∫tantd(tant)-∫(sect)^3dt+∫sectdt
=(1/2)(tant)^2+ln│sect+tant│-∫(sect)^3dt
计算∫(sect)^3dt
=∫sectd(tant)
=secttant-∫(tant)^2*sectdt
=secttant-∫(sect)^3dt+∫sectdt
=secttant-∫(sect)^3dt+ln│sect+tant│
所以∫(sect)^3dt=(1/2)secttant+(1/2)ln│sect+tant│
代入得∫dx/[x+√(x^2-1)]
=(1/2)tan^2t-(1/2)secttant+(1/2)ln│sect+tant│+C
=(1/2)x^2-(1/2)x√(x^2-1)+(1/2)ln│x+√(x^2-1)│+C1(C1=C-1/2)
∫dx/[x+√(x^2-1)]
=∫sect*tantdt/(sect+tant)
=∫sect*tant(sect-tant)dt
=∫[(sect)^2tant-sect(tant)^2]dt
=∫tantd(tant)-∫(sect)^3dt+∫sectdt
=(1/2)(tant)^2+ln│sect+tant│-∫(sect)^3dt
计算∫(sect)^3dt
=∫sectd(tant)
=secttant-∫(tant)^2*sectdt
=secttant-∫(sect)^3dt+∫sectdt
=secttant-∫(sect)^3dt+ln│sect+tant│
所以∫(sect)^3dt=(1/2)secttant+(1/2)ln│sect+tant│
代入得∫dx/[x+√(x^2-1)]
=(1/2)tan^2t-(1/2)secttant+(1/2)ln│sect+tant│+C
=(1/2)x^2-(1/2)x√(x^2-1)+(1/2)ln│x+√(x^2-1)│+C1(C1=C-1/2)
帮忙算一下∫dx/[x+√(x^2-1)]
求不定积分(含根号)哪位高人帮忙解答一下?!∫x(根号(1+x))dx
∫x√(1+2x)dx
帮忙解一下这个不定积分∫√(e^x-3)dx
帮忙求一下e^∫ln(1+x)dx积分上限为1,下限为0
求不定积分 ∫ 1/(1+2x)² dx ∫ x/√x²+4 dx
帮个忙,算一下∫e^(2x) * (tan x+1)^2dx和∫(x*e^(arctan x))/(1+x^2)^(3/
求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]
∫1/x^4√(1+x²)dx帮忙解答,
∫ √(1+x)dx怎么算,
∫dx/√ (x + 1)^2 + 9.
∫ (x+1)*√(2-x2) dx