在△ABC中,求证:c(acosB-bcosA)=a²-b²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:43:32
利用正弦定理a/sinA=b/sinB=c/sinC=2R(R为三角形ABC外接圆的半径)则sinA=2R/asinB=2R/bsinC=2R/c将这三个式子带入题目左边,就能得到0
错了,右边应该是b*cosA+a*cosB由余弦定理右边=b(b²+c²-a²)/2bc+a(a²+c²-b²)/2ac=(b²+
证明:根据余弦定理将cosB=a2+c2−b22ac,cosA=b2+c2−a22bc代入右边得右边c(a2+c2−b22abc-b2+c2−a22abc)=2a2−2b22ab=a2−b2ab=ab
向量垂直,数量积=根号3*cosA-sinA=0tanA=根号3A=60三角形正弦定理:a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)a=b
解:1.由余弦定理:cosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2ac所以:(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB=-cosA*2
AO⊥BC延长AO交BC于D∵OB=OC,AB=AC,AO=AO∴三角形ABO≌三角形ACO∠ABO=∠ACO,∠ABC=∠ACB,∠OBC=∠OCB,∴∠OBC=∠OCB,∠BOD=∠COD,OB=
在△ABC中,由正弦定理可得a=2RsinA,b=2RsinB,c=2RsinC,∴a2+b2c2=4R2sin2A+4R2sin2B4R2sin2C=sin2A+sin2Bsin2C,故a2+b2c
其实这道题几何上解决起来很容易.画一个任意三角形ABC,每个角的对边标上字母a,b,c,在AB边上做一条高,c边其实由两部分组成,一部分是bcosA,另一部分是acosB,两部分结合起来即是c边长.说
作正△CAQ,连结BQ,依题意易得:∠BAQ=60°-50°=10°=∠OAB;∠QCB=80°-60°=20°;CQ=CA=CB所以∠CBQ=80°,∠ABQ=∠CBQ-∠CBA=80°-50°=3
(1)证明:过A作AH⊥BC于H,过C作CE∥AB交AD延长线于E,则∠E=∠BAD,∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠E=∠CAD,∴AC=CE,∵CE∥AB,∴△ECD∽△ABD,∴B
分析:本题主要注意两点:①公式cos2a=2cos²a-1的应用,该公式可引申为cosa=2cos²(a/2)-1②余弦定理公式的应用.证明:∵cosa=2cos²(a/
sin^2A+sin^2B+sin^2C=(1-cosA)/2+(1-cosB)/2+(1-cos^2C)=2-cos(A+B)cos(A-B)-cos^2C=2+cosCsoc(A-B)-cos^2
BD边中点记做O连接DO、EO,三角形BCD是直角三角形,DO是斜边上的中线,DO=1/2BC=BO=CO同理,EO=1/2BC=BO=CO.所以O到B、C、D、E距离相等,因此四点共圆
角A+角B+角C=180度其中角A+角B=角C即2倍角C=180度则角C=180度/2=90度三角形ABC是直角三角形
证明:∵acos2C2+ccos2A2=a•1+cosC2+c•1+cosA2=a+c2+12(a•a2+b2−c22ab+c•b2+c2−a22bc)=12(a+b+c),∴acos2C2+ccos
题目本身结论不成立.如三边的长度为3,4,5,满足4的平方+5的平方大于3的平方,但它是直角三角形.可加条件“c为最长边”使结论成立.用余弦定理可证.
1、整理易得(2b-根号3.c)cosA=根号3.a.cosC,因为cosC=(a^2+b^2-c^2)/2ab得cosA=根号3(a^2+b^2-c^2)/2b(2b-根号3.c)所以角度A=arc
此题不能成立!设OB=m,OC=n,∠OBC=x,∠OCB=y;那么x+y=180°-(20°+30°+30°)=100°,即x+y=100°.(1)如果∠ABC=∠ACB,则x+20°=y+30°,
看了半天,应该是:acos²(C/2)+ccos²(A/2)≥3b/2证明:∵△ABC中,a,b,c成等比数列,令b/a=c/b=q(q≠0),则:b=aqc=bq=aq²
延长BO交AC于E,∵∠A=50°,∠ABO=20°,∴∠1=50°+20°=70°,∵∠ACO=30°,∴∠BOC=∠1+∠ACO=70°+30°=100°