已知如图PAB,PCD是圆O的割线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:31:25
我们先来看看本题的特点,不难看出三角形PAB和三角形PDC都可以以AB或DC为底边,且AB和DC恰好是平行四边形ABCD的一组对边.三角形PAB和三角形PDC分别以AB和DC为底时的高与平行四边形AB
证明:连接AD、BC∵∠A和∠C都对弧BD∴由圆周角定理,得∠A=∠C又∵∠APD=∠CPB∴△ADP∽△CBP∴AP:CP=DP:BP,也就是AP·BP=CP·DP
PC*PD=PA*PB则有:1/2PD*PD=4*(4+2)=24PD=√48=4√3
结论1∠APC+∠PAB+∠PCD=360º2∠APC=∠PAB+∠PCD3∠PAB+∠APC=∠PCD4∠PAB=∠APC+∠PCD证明1过点P做PM∥AB(在AB、CD间)∵AB∥CD∴
看不到图,不知道对发先证2个三角形BOP和DOP全等因为OP=OP,OB=OD,角BPO=角DPO,所以全等(边边角定理...)得出结论:角PDO=角PBO因为三角形DOC和三角形AOB是等腰三角形,
连结OB,OA,OD,OC,BD由圆形的半径可知OB=OA=OC=OD,因为PB=PD,所以∠PBD=∠PDB因为OB=OD所以∠OBD=∠ODB因为等量减等量,差相等所以∠OBP=∠ODP因为OB=
由切割线定理PC·PD=PE²得:PD=PE²/PC=6²/3=12.在△PAC和△PDB中:∠PAC=∠PDB、∠BPD为共同角,故两者相似.则:BD/AC=PD/PA
②,④是对的,如要解析是可以,只要你需要再问:求解析,谢谢再答:①,如图,你懂得②如图S2=a(b+d)/2,S4=c(a+b)/2S3=b(a+c)/2,S1=d(a+c)/2于是S2+S4=a(b
连接OC、OD、AC,∵弧AC=弧CD,∴AC=CD,在△AOC和△DOC中,OA=ODAC=CDOC=OC,∴△AOC≌△DOC(SSS),∴∠ODC=∠OAC,∠OCD=∠OCA,∠AOC=∠DO
证明,根据圆割线与切线的关系,可知PA*PB=PC*PD,又因为PA=PC,则PB-PA=PD-PC即:AB=CD
:(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.所以狐等∴CD=BD
由割线长定理得:PA•PB=PC•PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD为正三角形,∠CBD=12∠COD=30°.
解题思路:根据三角形面积求法以及矩形性质得出S1+S3=12矩形ABCD面积,以及PFPE=ABAD,PFCD=PEBC,即可得出P点一定在AC上.解题过程:最终答案:②④
过o向AB和CD做垂线,OE垂直于AB,OF垂直于CD,因为AB=CD,所以OE=OF.,连接OP,所以三角形OPE全等于OPF,所以PE=PF,又因为AE=AF,所以PA=PC
命题1,条件③④结论①②,若OE⊥CD,OF⊥AB;OE=OF,根据角平分线的性质可知PO平分∠BPD;AB=CD;命题2,条件②③结论①④.若AB=CD;OE⊥CD,OF⊥AB;根据垂径定理可知OE
应该是PA=PC证明:做OE⊥PAB于E做OF⊥PCD于FPA=PC,OP=OP,OA=OC==>△POA≌△POC∠OPA=∠OPC即,OP为APC的角平分线则OE=OF【斜边及一直角边对应相等的两
(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.∴CD=BD.∴CD=BD.(2)∵AC∥OD,∴PAPC=AOCD.∵PAPC=56,CD=BD,
过P做PF垂直于AB,PE垂直于CD,EF垂直于AB,因为AB平行于CD,所以PF、EF、PE在一条直线上,所以PF=PE+EF,平行四边形ABCD的面积=AB×EF,=AB×(PF-PE),=AB×