ab均为n阶方阵,ab等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:32:08
|AB|=|A||B|=|B||A|=|BA|
因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)
A+B=AB,所以(A-I)(B-I)=I,说明A-I与B-I互为逆矩阵,设它们为X,Y,即A=I+X,B=I+Y,X与Y互逆,所以,AB=(I+X)(I+Y)=I+X+Y+XY=2I+X+Y,BA=
A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA
AA*=|A|Er(A)=n-1,说明|A|=0因此AA*=0于A*的列向量为齐次方程AX=0的解向量从而r(A*)=1总之r(A*)=1
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.
AB=0,则B的列向量都是AX=0的解,而r(B)=n,所以线性方程组AX=0至少有n个线性无关的解;设这个解集为S,则r(S)=n-r(A)>=n,即r(A)=0,所以r(A)=0,即A=0.如果您
因为AB=0所以B的列向量都是Ax=0的解又因为B不为0所以Ax=0有非零解所以|A|=0所以r(A)
AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
证法一:考察矩阵μIABμI用第一行消第二行的B可以算出行列式,用第二行消第一行的A也能算出行列式,这两个行列式相等.令λ=μ^2,代入即得AB和BA的特征多项式相等,于是tr(AB)=tr(BA).
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
这个题是个错题,我令A和B均为n阶单位矩阵E,满足你的前提条件,但是AB=E不等于0
设方阵A的特征值和特征向量为 λ 和α再问:有没有更加简便或者基础一些的做法,谢谢再答:再简单也不如上面的简单,只需要理解就行;下面的这个方法相对基础一些!
不一定成立举反例就行了
A,B可逆,所以A逆,B逆存在,故B逆A逆是一个n阶方阵.直接验证:(B逆A逆)*AB=B逆*(A逆*A)*B=B逆*B=I(单位阵).类似的,AB*(B逆A逆)=I.由逆矩阵的定义,B逆A逆正是AB