如图6,△ABC和△ADC都是等边三角形,点E,F同时分别从点B,A出发,各自沿
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 15:09:03
如图6,△ABC和△ADC都是等边三角形,点E,F同时分别从点B,A出发,各自沿
(1)∵E、F的速度相同,且同时运动,
∴BE=AF,又∵BC=AC,∠B=∠CAF=60°,
∵
∴△BCE≌△ACF(SAS),得∠BCE=∠ACF,
因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,
所以∠ECF=∠BCA=60°.(2分)
(2)答:没有变化.
证明:由(1)知:△BCE、△ACF的面积相等;
故:S四边形AECF=S△AFC+S△AEC=S△AEC+S△BEC=S△ABC;(2分)
因此四边形AECF的面积没有变化.
(3)答:∠AFE=∠FCD=∠ACE;
证明:同(1)可证得:△ACE≌△DCF,得∠ACE=∠FCD;
由(1)知:EC=FC,∠ECF=60°,
∴△ECF是等边三角形,即∠EFC=60°;
∴∠FCD+∠DFC=120°,又∵∠AFE+∠DFC=120°,
∴∠AFE=∠FCD=∠ACE.
(4)回答(1)中结论成立.(连接 E、F)
由于当E、F分别在BA、AD的延长线上时,(1)的全等三角形仍然成立,故(1)的结论也成立.
∴BE=AF,又∵BC=AC,∠B=∠CAF=60°,
∵
∴△BCE≌△ACF(SAS),得∠BCE=∠ACF,
因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,
所以∠ECF=∠BCA=60°.(2分)
(2)答:没有变化.
证明:由(1)知:△BCE、△ACF的面积相等;
故:S四边形AECF=S△AFC+S△AEC=S△AEC+S△BEC=S△ABC;(2分)
因此四边形AECF的面积没有变化.
(3)答:∠AFE=∠FCD=∠ACE;
证明:同(1)可证得:△ACE≌△DCF,得∠ACE=∠FCD;
由(1)知:EC=FC,∠ECF=60°,
∴△ECF是等边三角形,即∠EFC=60°;
∴∠FCD+∠DFC=120°,又∵∠AFE+∠DFC=120°,
∴∠AFE=∠FCD=∠ACE.
(4)回答(1)中结论成立.(连接 E、F)
由于当E、F分别在BA、AD的延长线上时,(1)的全等三角形仍然成立,故(1)的结论也成立.
如图6,△ABC和△ADC都是等边三角形,点E,F同时分别从点B,A出发,各自沿
如图,△ABC和△ADC都是每边长相等的等边三角形,点E,F同时分别从点B,A出发,各自沿BA,AD方向运动到点A,D停
如图,已知△ABC是变长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、B
如图,△ABC是等边三角形,AB=6cm,动点P从点A出发沿AB以每秒1cm的速度向终点B运动,同时另一动点Q从点B出发
如图,△ABC是边长为10的等边三角形,动点P和动点Q分别从点B和点C同时出发,沿着△ABC逆时针运动,已知动点P的速度
如图,已知△abc是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向均匀运动,其中点P运动
如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速
如图,△ABC是边长为10cm的等边三角形,动点P和动点Q分别从点B和点C同时出发,沿着△ABC逆时针运动,已知
6cm 等边20、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动
一道有关相似的数学题如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运
20、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中?
如图,已知△abc是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向均匀运动,