已知点P为正方形ABCD外一点,PD⊥平面ABCD,PD=DC,E为PC中点,作EF⊥PB交PB于F
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 20:50:30
已知点P为正方形ABCD外一点,PD⊥平面ABCD,PD=DC,E为PC中点,作EF⊥PB交PB于F
求证:1、PA‖平面EDB
2、PB⊥平面EFD
要求:用空间向量证明.O(∩_∩)O谢谢~
求证:1、PA‖平面EDB
2、PB⊥平面EFD
要求:用空间向量证明.O(∩_∩)O谢谢~
8.(I)证明:连结AC,AC交BD于O,连结EO.
∵底面ABCD是正方形,∴点O是AC的中点
在 中,EO是中位线,∴PA // EO
而 平面EDB且 平面EDB,
所以,PA // 平面EDB
(II)证明:
∵PD⊥底面ABCD且DC包含于底面ABCD,∴PD⊥BC∵PD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC ①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE包含于平面PDC,∴BC⊥DC②
由①和②推得DE⊥平面PBC.
而PB包含于平面PBC,∴ DE⊥PB
又EF⊥PB且DE并上EF=E ,所以PB⊥平面EFD
累的.仙人的答案.个人补充了答案.给分吧,我不容易的.
∵底面ABCD是正方形,∴点O是AC的中点
在 中,EO是中位线,∴PA // EO
而 平面EDB且 平面EDB,
所以,PA // 平面EDB
(II)证明:
∵PD⊥底面ABCD且DC包含于底面ABCD,∴PD⊥BC∵PD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC ①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE包含于平面PDC,∴BC⊥DC②
由①和②推得DE⊥平面PBC.
而PB包含于平面PBC,∴ DE⊥PB
又EF⊥PB且DE并上EF=E ,所以PB⊥平面EFD
累的.仙人的答案.个人补充了答案.给分吧,我不容易的.
已知点P为正方形ABCD外一点,PD⊥平面ABCD,PD=DC,E为PC中点,作EF⊥PB交PB于F
已知,ABCD是正方形,P为平面ABCD外一点,且PD垂直底面ABCD,PD等于DC,E是PC的中点,作EF垂直PB于点
在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于点F
PD垂直于正方形ABCD所在平面,PD=DC,E为PC的中点,EF垂直于PB于F.求证:一,PB垂直于面EFD
在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD与底面ABCD垂直,PD=DC,E是PC的中点,作EF⊥PB于点F
在四棱锥P-ABCD中,底面ABCD是正方形.侧棱PD⊥底面ABCD,PD=DC=2,E是PC中点,作EF⊥PB交PB于
如图,PD垂直正方形ABCD所在的平面,PD=DC,E为PC的中点,EF垂直于PB于点F,求证,PB垂直于平面EFD
在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,做EF⊥PB交PB于点
四棱锥P-ABCD中,底ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点,EF⊥PB交PB于点F若PD=2,P-
在四棱锥p-底ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,PD=DC=2,E是PC的中点,作EF垂直PB交
如图在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交P