4sinθcos²θ/2=2sinθ+sin2θ
证明恒等式4sinθcos²θ/2=2sinθ+sin2θ
4sinθcos²θ/2=2sinθ+sin2θ
4sinΘcos²(θ/2)=2sinΘ+sin2Θ
为什么sin2θ+sinθ=2sinθcosθ+sinθ=sinθ(2cosθ+1)
证明:2sinθ+sin2θ=4sinθ×cos^2(θ/2)
求证4sinθ(cosθ/2)^2=2sinθ+sin2θ
为什么2cosθ*sinθ=sin2θ?
证明2sinθcosθ=sin2θ.
证明2sinθcosθ=sin2θ
已知(sinθ+cosθ)/(sinθ-cosθ)=2,则sin2θ
数学求证:sin2θ+sinθ/2cosθ+2sin²θ+cosθ=tanθ
若sin(π/4+α)=sinθ+cosθ,2sin^2β=sin2θ,求证:sin2θ+2cos2β=3