设函数f(x)=ex-1-x-ax2.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 23:44:00
设函数f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时f(x)≥0,求a的取值范围.
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时f(x)≥0,求a的取值范围.
(1)a=0时,f(x)=ex-1-x,f′(x)=ex-1.
当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.
故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加
(II)f′(x)=ex-1-2ax
由(I)知ex≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,
从而当1-2a≥0,即a≤
1
2时,f′(x)≥0(x≥0),而f(0)=0,
于是当x≥0时,f(x)≥0.
由ex>1+x(x≠0)可得e-x>1-x(x≠0).
从而当a>
1
2时,f′(x)<ex-1+2a(e-x-1)=e-x(ex-1)(ex-2a),
故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.
综合得a的取值范围为(−∞,
1
2].
当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.
故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加
(II)f′(x)=ex-1-2ax
由(I)知ex≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,
从而当1-2a≥0,即a≤
1
2时,f′(x)≥0(x≥0),而f(0)=0,
于是当x≥0时,f(x)≥0.
由ex>1+x(x≠0)可得e-x>1-x(x≠0).
从而当a>
1
2时,f′(x)<ex-1+2a(e-x-1)=e-x(ex-1)(ex-2a),
故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.
综合得a的取值范围为(−∞,
1
2].
设函数f(x)=ex-1-x-ax2.
设函数f(x)=ex-e-x
设函数f(x)=xex-ax2.
设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=
设函数f(x)=ex-x(e为自然对数的底数).
设函数f(x)=xln(ex+1)−12x
(2014•漳州二模)已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
设a为实数,函数f(x)=ex-2x+2a,x∈R.
设f(x)=ex(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行.(1)求a的值,并讨论f(x)的单调性
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R. (1)若a=1,求曲线f(x)在点(1,f(
已知函数f(x)=ax2-bx+1.
设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.