设f1,f2是双曲线x² 9-y² 16

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 05:26:50
设F1、F2分别是双曲线x²-y²/9=1的左、右焦点,若点P在双曲线上,且向量PF1*向量PF2=

X²-Y²/3²=1==>C=√[1+3²]=√10.根据向量的平行四边形法则得:2向量PO=向量PF1+向量PF2在RTΔPF1F2中:OP=OF1=OF2=

第一题 设F1 F2 为双曲线X²/4-y²=1 的两个焦点,点P在双曲线上,且满足角F1PF2=9

(1)点P在双曲线上,且满足角F1PF2=90°F1F2为双曲线X²/4-y²=1的两个焦点,a=2.c=√5|PF1|-|PF2|=2a(|PF1|-|PF2|)^2=(2a)^

设F1,F2是双曲线x

由题意x29−y216=1,可得F2(5,0),F1(-5,0),由余弦定理可得 100=PF12+PF22-2PF1•PF2cos60°=(PF1-PF2)2+PF1•PF2=36+PF1

双曲线x平方/9 -y的平方/16=1的两个焦点是F1.F2,

a²=9a=3设PF1=p,PF2=q由双曲线定义|p-q|=2a=6平方p²-2pq+q²=36垂直则p²+q²=F1F2²c²

设F1,F2是双曲线x^2/4-y^2=1的两个焦点,点P在双曲线上

1、a²=4,b²=1c²=a²+b²=5令PF1=m,PF2=n则|m-n|=2a=4平方m²-2mn+n²=16F1F2=2c

【【设F1 F2是双曲线 x^2/9 - y^2/4 = 1的两个焦点,点P是双曲线上任意一点,且∠F1PF2=30°,

S=b²cotθ/2=8+4根号3再问:前面的具体解题步骤。。。还有b2=4,cot30°不是根号3么,算下来不是2倍根号3么。。再答:前面的步骤:r1-r2=6,2r1r2cos30=r1

设双曲线X^2/4-Y^2/9=1,F1、F2是其两个焦点,点P在双曲线右支上.1,若角F1PF2=90°求三角形F1P

1.设|PF1|=m,|PF2|=n,(m<n)根据双曲线定义有|PF1|-|PF2|=2a=4,即m-n=4角F1PF2=90°三角形F1PF2为直角三角形,有|PF1|^2+|PF2|^2=|F1

设P是双曲线x²/9—y²/16=1上一点,F1,F2分别是双曲线的左、右焦点,若lPF1l=7,则

a²=9所以2a=6则||PF1|-|PF2||=6所以|7-|PF2||=67-|PF2|=±6所以|PF2|=1或13再问:我也是这样填的,所以老师算我错,答案是13不可能是1,帮我想想

设F1,F2是双曲线9/X²-Y²/16=1的两个焦点,点P在双曲线上,且∠F1PF2=60°求三角

a²=9b²=16所以c²=25c=5F1F2=2c=10令PF1=m,PF2=n则|m-n|=2a=6平方m²-2mn+n²=36m²+n

已知P是双曲线x^2/a^2-y^2/9=1右支上的一点,双曲线的一条渐近线方程为3x-y=0,设F1、F2分别为双曲线

x^2/a^2-y^2/9=13x=y可以推出a=1双曲线x^2-y^2/9=12a=2=|PF1|-|PF2|椭圆的性质|PF2|=3|PF1|=3+2=5

已知F1、F2是双曲线x

因为双曲线方程为x216−y29=1,所以2a=8.由双曲线的定义得|PF2|-|PF1|=2a=8,①|QF2|-|QF1|=2a=8.②①+②,得|PF2|+|QF2|-(|PF1|+|QF1|)

已知等轴双曲线C:xy=9/2,两个焦点F1,F2在直线y=x上,线段F1,F2的中点是坐标原点.

不能算出AB的方程然后和双曲线联列一下方程,因为AB在同侧,算最小值你也可以做B关于X轴对称点C,然后求出AC方程,与双曲线联立.案答案来解释,可以设B与F交双曲线于P点,要求AP+BP最小,FP-A

设P是双曲线x^2/a^2-y^2/9=1(a>0)右支上一点,其一条渐近线方程式3x-2y=0,F1,F2分别是双曲线

一条渐近线方程式3x-2y=0,即:y=3x/2=bx/a得:b/a=3/2又:b=3,所以:a=2则:c²=a²+b²=13根据双曲线的定义有:|PF1-PF2|=2a

设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2

x^2-y^2/24=1,则双曲线a=1,c=5|F1F2|=10,定义,||PF1|-|PF2||=2a=2又|PF1|+|PF2|=14故|PF1|=8,|PF2|=6或|PF1|=6,|PF2|

已知F1,F2是双曲线x

∵双曲线方程为x22-y2=1,∴a2=2,a=2∵P、Q为双曲线右支上的两点,∴|PF1|-|PF2|=2a=22,,|QF1|-|QF2|=2a=22,∴|PF1|-|PF2|+|QF1|-|QF

双曲线数学题1.已知双曲线的方程是16x²-9y²=144设F1,F2是双曲线的左右焦点,点P在双曲

1x^2/9-y^2/16=1a=4,b=3c^2=a^2+b^2=25,c=5|PF1-PF2|=2a=82|PF1PF2|cosF1PF2=F1P^2+F2P^2-F1F2^22|PF1PF2|(

数学问题:设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2

1设椭圆x²/6+y²/2=1和x²/3-y²=1的公共焦点分别为F1,F2.P是两曲线的一个交点,则cos角F1PF2的值为?椭圆的半焦距c=√(6-2)=2

设双曲线x^2/a^2-y^2/b^2=1的左右焦点为F1,F2,P是双曲线右支上的一点

设内切圆与PF1切于A,与PF2切于B,则|PA|=|PB|,|F1A|=|F1Q|,|F2B|=|F2Q|因为|F1Q|=|F1O|+|OQ|,所以|F1O|=|F1Q|-|OQ|=4-1=3,即c

设F1,F2分别是双曲线x2-y

设|PF1|=m,|PF2|=n,则|m-n|=2①,m2+n2=40②,②-①2可得2mn=36,∴mn=18,设P点纵坐标为y,则12•210|y|=12•18,∴|y|=91010,∴y=±91